Spaces:
Running
on
L40S
Running
on
L40S
File size: 31,685 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.runner import BaseModule, ModuleList, Sequential
from torch.nn.modules.batchnorm import _BatchNorm
from .resnet import BasicBlock, Bottleneck
class HRModule(BaseModule):
"""High-Resolution Module for HRNet.
In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange
is in this module.
"""
def __init__(self,
num_branches,
blocks,
num_blocks,
in_channels,
num_channels,
multiscale_output=True,
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
block_init_cfg=None,
init_cfg=None):
super(HRModule, self).__init__(init_cfg)
self.block_init_cfg = block_init_cfg
self._check_branches(num_branches, num_blocks, in_channels,
num_channels)
self.in_channels = in_channels
self.num_branches = num_branches
self.multiscale_output = multiscale_output
self.norm_cfg = norm_cfg
self.conv_cfg = conv_cfg
self.with_cp = with_cp
self.branches = self._make_branches(num_branches, blocks, num_blocks,
num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(inplace=False)
def _check_branches(self, num_branches, num_blocks, in_channels,
num_channels):
if num_branches != len(num_blocks):
error_msg = f'NUM_BRANCHES({num_branches}) ' \
f'!= NUM_BLOCKS({len(num_blocks)})'
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = f'NUM_BRANCHES({num_branches}) ' \
f'!= NUM_CHANNELS({len(num_channels)})'
raise ValueError(error_msg)
if num_branches != len(in_channels):
error_msg = f'NUM_BRANCHES({num_branches}) ' \
f'!= NUM_INCHANNELS({len(in_channels)})'
raise ValueError(error_msg)
def _make_one_branch(self,
branch_index,
block,
num_blocks,
num_channels,
stride=1):
downsample = None
if stride != 1 or \
self.in_channels[branch_index] != \
num_channels[branch_index] * block.expansion:
downsample = nn.Sequential(
build_conv_layer(self.conv_cfg,
self.in_channels[branch_index],
num_channels[branch_index] * block.expansion,
kernel_size=1,
stride=stride,
bias=False),
build_norm_layer(self.norm_cfg, num_channels[branch_index] *
block.expansion)[1])
layers = []
layers.append(
block(self.in_channels[branch_index],
num_channels[branch_index],
stride,
downsample=downsample,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg,
init_cfg=self.block_init_cfg))
self.in_channels[branch_index] = \
num_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(
block(self.in_channels[branch_index],
num_channels[branch_index],
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg,
init_cfg=self.block_init_cfg))
return Sequential(*layers)
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
branches.append(
self._make_one_branch(i, block, num_blocks, num_channels))
return ModuleList(branches)
def _make_fuse_layers(self):
if self.num_branches == 1:
return None
num_branches = self.num_branches
in_channels = self.in_channels
fuse_layers = []
num_out_branches = num_branches if self.multiscale_output else 1
for i in range(num_out_branches):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(
nn.Sequential(
build_conv_layer(self.conv_cfg,
in_channels[j],
in_channels[i],
kernel_size=1,
stride=1,
padding=0,
bias=False),
build_norm_layer(self.norm_cfg, in_channels[i])[1],
nn.Upsample(scale_factor=2**(j - i),
mode='nearest')))
elif j == i:
fuse_layer.append(None)
else:
conv_downsamples = []
for k in range(i - j):
if k == i - j - 1:
conv_downsamples.append(
nn.Sequential(
build_conv_layer(self.conv_cfg,
in_channels[j],
in_channels[i],
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
in_channels[i])[1]))
else:
conv_downsamples.append(
nn.Sequential(
build_conv_layer(self.conv_cfg,
in_channels[j],
in_channels[j],
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
in_channels[j])[1],
nn.ReLU(inplace=False)))
fuse_layer.append(nn.Sequential(*conv_downsamples))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def forward(self, x):
"""Forward function."""
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = 0
for j in range(self.num_branches):
if i == j:
y += x[j]
else:
y += self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
class PoseHighResolutionNet(BaseModule):
"""HRNet backbone.
`High-Resolution Representations for Labeling Pixels and Regions
arXiv: <https://arxiv.org/abs/1904.04514>`_.
Args:
extra (dict): Detailed configuration for each stage of HRNet.
There must be 4 stages, the configuration for each stage must have
5 keys:
- num_modules(int): The number of HRModule in this stage.
- num_branches(int): The number of branches in the HRModule.
- block(str): The type of convolution block.
- num_blocks(tuple): The number of blocks in each branch.
The length must be equal to num_branches.
- num_channels(tuple): The number of channels in each branch.
The length must be equal to num_branches.
in_channels (int): Number of input image channels. Default: 3.
conv_cfg (dict): Dictionary to construct and config conv layer.
norm_cfg (dict): Dictionary to construct and config norm layer.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: True.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Default: False.
multiscale_output (bool): Whether to output multi-level features
produced by multiple branches. If False, only the first level
feature will be output. Default: True.
num_joints(int): the number of output for the final layer. Default: 24.
pretrained (str, optional): Model pretrained path. Default: None.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck}
def __init__(self,
extra,
in_channels=3,
conv_cfg=None,
norm_cfg=dict(type='BN'),
norm_eval=True,
with_cp=False,
num_joints=24,
zero_init_residual=False,
multiscale_output=True,
pretrained=None,
init_cfg=None):
super(PoseHighResolutionNet, self).__init__(init_cfg)
self.pretrained = pretrained
assert not (init_cfg and pretrained), \
'init_cfg and pretrained cannot be specified at the same time'
if isinstance(pretrained, str):
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
elif pretrained is None:
if init_cfg is None:
self.init_cfg = [
dict(type='Kaiming', layer='Conv2d'),
dict(type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm'])
]
else:
raise TypeError('pretrained must be a str or None')
# Assert configurations of 4 stages are in extra
assert 'stage1' in extra and 'stage2' in extra \
and 'stage3' in extra and 'stage4' in extra
# Assert whether the length of `num_blocks` and `num_channels` are
# equal to `num_branches`
for i in range(4):
cfg = extra[f'stage{i + 1}']
assert len(cfg['num_blocks']) == cfg['num_branches'] and \
len(cfg['num_channels']) == cfg['num_branches']
self.extra = extra
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp
self.zero_init_residual = zero_init_residual
# stem net
self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1)
self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2)
self.conv1 = build_conv_layer(self.conv_cfg,
in_channels,
64,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(self.conv_cfg,
64,
64,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.add_module(self.norm2_name, norm2)
self.relu = nn.ReLU(inplace=True)
# stage 1
self.stage1_cfg = self.extra['stage1']
num_channels = self.stage1_cfg['num_channels'][0]
block_type = self.stage1_cfg['block']
num_blocks = self.stage1_cfg['num_blocks'][0]
block = self.blocks_dict[block_type]
stage1_out_channels = num_channels * block.expansion
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)
# stage 2
self.stage2_cfg = self.extra['stage2']
num_channels = self.stage2_cfg['num_channels']
block_type = self.stage2_cfg['block']
block = self.blocks_dict[block_type]
num_channels = [channel * block.expansion for channel in num_channels]
self.transition1 = self._make_transition_layer([stage1_out_channels],
num_channels)
self.stage2, pre_stage_channels = self._make_stage(
self.stage2_cfg, num_channels)
# stage 3
self.stage3_cfg = self.extra['stage3']
num_channels = self.stage3_cfg['num_channels']
block_type = self.stage3_cfg['block']
block = self.blocks_dict[block_type]
num_channels = [channel * block.expansion for channel in num_channels]
self.transition2 = self._make_transition_layer(pre_stage_channels,
num_channels)
self.stage3, pre_stage_channels = self._make_stage(
self.stage3_cfg, num_channels)
# stage 4
self.stage4_cfg = self.extra['stage4']
num_channels = self.stage4_cfg['num_channels']
block_type = self.stage4_cfg['block']
block = self.blocks_dict[block_type]
num_channels = [channel * block.expansion for channel in num_channels]
self.transition3 = self._make_transition_layer(pre_stage_channels,
num_channels)
self.stage4, pre_stage_channels = self._make_stage(
self.stage4_cfg, num_channels, multiscale_output=multiscale_output)
# self.pretrained_layers = extra['pretrained_layers']
self.final_layer = build_conv_layer(
cfg=self.conv_cfg,
in_channels=pre_stage_channels[0],
out_channels=num_joints,
kernel_size=extra['final_conv_kernel'],
stride=1,
padding=1 if extra['final_conv_kernel'] == 3 else 0)
if extra['downsample'] and extra['use_conv']:
self.downsample_stage_1 = self._make_downsample_layer(
3, num_channel=self.stage2_cfg['num_channels'][0])
self.downsample_stage_2 = self._make_downsample_layer(
2, num_channel=self.stage2_cfg['num_channels'][-1])
self.downsample_stage_3 = self._make_downsample_layer(
1, num_channel=self.stage3_cfg['num_channels'][-1])
elif not extra['downsample'] and extra['use_conv']:
self.upsample_stage_2 = self._make_upsample_layer(
1, num_channel=self.stage2_cfg['num_channels'][-1])
self.upsample_stage_3 = self._make_upsample_layer(
2, num_channel=self.stage3_cfg['num_channels'][-1])
self.upsample_stage_4 = self._make_upsample_layer(
3, num_channel=self.stage4_cfg['num_channels'][-1])
@property
def norm1(self):
"""nn.Module: the normalization layer named "norm1" """
return getattr(self, self.norm1_name)
@property
def norm2(self):
"""nn.Module: the normalization layer named "norm2" """
return getattr(self, self.norm2_name)
def _make_transition_layer(self, num_channels_pre_layer,
num_channels_cur_layer):
num_branches_cur = len(num_channels_cur_layer)
num_branches_pre = len(num_channels_pre_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(
nn.Sequential(
build_conv_layer(self.conv_cfg,
num_channels_pre_layer[i],
num_channels_cur_layer[i],
kernel_size=3,
stride=1,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
num_channels_cur_layer[i])[1],
nn.ReLU(inplace=True)))
else:
transition_layers.append(None)
else:
conv_downsamples = []
for j in range(i + 1 - num_branches_pre):
in_channels = num_channels_pre_layer[-1]
out_channels = num_channels_cur_layer[i] \
if j == i - num_branches_pre else in_channels
conv_downsamples.append(
nn.Sequential(
build_conv_layer(self.conv_cfg,
in_channels,
out_channels,
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg, out_channels)[1],
nn.ReLU(inplace=True)))
transition_layers.append(nn.Sequential(*conv_downsamples))
return nn.ModuleList(transition_layers)
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
build_conv_layer(self.conv_cfg,
inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False),
build_norm_layer(self.norm_cfg, planes * block.expansion)[1])
layers = []
block_init_cfg = None
if self.pretrained is None and not hasattr(
self, 'init_cfg') and self.zero_init_residual:
if block is BasicBlock:
block_init_cfg = dict(type='Constant',
val=0,
override=dict(name='norm2'))
elif block is Bottleneck:
block_init_cfg = dict(type='Constant',
val=0,
override=dict(name='norm3'))
layers.append(
block(
inplanes,
planes,
stride,
downsample=downsample,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg,
init_cfg=block_init_cfg,
))
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(inplanes,
planes,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg,
init_cfg=block_init_cfg))
return Sequential(*layers)
def _make_stage(self, layer_config, in_channels, multiscale_output=True):
num_modules = layer_config['num_modules']
num_branches = layer_config['num_branches']
num_blocks = layer_config['num_blocks']
num_channels = layer_config['num_channels']
block = self.blocks_dict[layer_config['block']]
hr_modules = []
block_init_cfg = None
if self.pretrained is None and not hasattr(
self, 'init_cfg') and self.zero_init_residual:
if block is BasicBlock:
block_init_cfg = dict(type='Constant',
val=0,
override=dict(name='norm2'))
elif block is Bottleneck:
block_init_cfg = dict(type='Constant',
val=0,
override=dict(name='norm3'))
for i in range(num_modules):
# multi_scale_output is only used for the last module
if not multiscale_output and i == num_modules - 1:
reset_multiscale_output = False
else:
reset_multiscale_output = True
hr_modules.append(
HRModule(num_branches,
block,
num_blocks,
in_channels,
num_channels,
reset_multiscale_output,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg,
block_init_cfg=block_init_cfg))
return Sequential(*hr_modules), in_channels
def _make_upsample_layer(self, num_layers, num_channel, kernel_size=3):
layers = []
for i in range(num_layers):
layers.append(
nn.Upsample(scale_factor=2,
mode='bilinear',
align_corners=True))
layers.append(
build_conv_layer(
cfg=self.conv_cfg,
in_channels=num_channel,
out_channels=num_channel,
kernel_size=kernel_size,
stride=1,
padding=1,
bias=False,
))
layers.append(build_norm_layer(self.norm_cfg, num_channel)[1])
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def _make_downsample_layer(self, num_layers, num_channel, kernel_size=3):
layers = []
for i in range(num_layers):
layers.append(
build_conv_layer(
cfg=self.conv_cfg,
in_channels=num_channel,
out_channels=num_channel,
kernel_size=kernel_size,
stride=2,
padding=1,
bias=False,
))
layers.append(build_norm_layer(self.norm_cfg, num_channel)[1])
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def forward(self, x):
"""Forward function."""
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_cfg['num_branches']):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
x_list = []
for i in range(self.stage3_cfg['num_branches']):
if self.transition2[i] is not None:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
x_list = []
for i in range(self.stage4_cfg['num_branches']):
if self.transition3[i] is not None:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage4(x_list)
if self.extra['return_list']:
return y_list
elif self.extra['downsample']:
if self.extra['use_conv']:
# Downsampling with strided convolutions
x1 = self.downsample_stage_1(y_list[0])
x2 = self.downsample_stage_2(y_list[1])
x3 = self.downsample_stage_3(y_list[2])
x = torch.cat([x1, x2, x3, y_list[3]], 1)
else:
# Downsampling with interpolation
x0_h, x0_w = y_list[3].size(2), y_list[3].size(3)
x1 = F.interpolate(y_list[0],
size=(x0_h, x0_w),
mode='bilinear',
align_corners=True)
x2 = F.interpolate(y_list[1],
size=(x0_h, x0_w),
mode='bilinear',
align_corners=True)
x3 = F.interpolate(y_list[2],
size=(x0_h, x0_w),
mode='bilinear',
align_corners=True)
x = torch.cat([x1, x2, x3, y_list[3]], 1)
else:
if self.extra['use_conv']:
# Upsampling with interpolations + convolutions
x1 = self.upsample_stage_2(y_list[1])
x2 = self.upsample_stage_3(y_list[2])
x3 = self.upsample_stage_4(y_list[3])
x = torch.cat([y_list[0], x1, x2, x3], 1)
else:
# Upsampling with interpolation
x0_h, x0_w = y_list[0].size(2), y_list[0].size(3)
x1 = F.interpolate(y_list[1],
size=(x0_h, x0_w),
mode='bilinear',
align_corners=True)
x2 = F.interpolate(y_list[2],
size=(x0_h, x0_w),
mode='bilinear',
align_corners=True)
x3 = F.interpolate(y_list[3],
size=(x0_h, x0_w),
mode='bilinear',
align_corners=True)
x = torch.cat([y_list[0], x1, x2, x3], 1)
return x
def train(self, mode=True):
"""Convert the model into training mode will keeping the normalization
layer freezed."""
super(PoseHighResolutionNet, self).train(mode)
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
class PoseHighResolutionNetExpose(PoseHighResolutionNet):
"""HRNet backbone for expose."""
def __init__(self,
extra,
in_channels=3,
conv_cfg=None,
norm_cfg=dict(type='BN'),
norm_eval=True,
with_cp=False,
num_joints=24,
zero_init_residual=False,
multiscale_output=True,
pretrained=None,
init_cfg=None):
super().__init__(extra, in_channels, conv_cfg, norm_cfg, norm_eval,
with_cp, num_joints, zero_init_residual,
multiscale_output, pretrained, init_cfg)
in_dims = (2**2 * self.stage2_cfg['num_channels'][-1] +
2**1 * self.stage3_cfg['num_channels'][-1] +
self.stage4_cfg['num_channels'][-1])
self.conv_layers = self._make_conv_layer(in_channels=in_dims,
num_layers=5)
self.subsample_3 = self._make_subsample_layer(
in_channels=self.stage2_cfg['num_channels'][-1], num_layers=2)
self.subsample_2 = self._make_subsample_layer(
in_channels=self.stage3_cfg['num_channels'][-1], num_layers=1)
def _make_conv_layer(self,
in_channels=2048,
num_layers=3,
num_filters=2048,
stride=1):
layers = []
for i in range(num_layers):
downsample = nn.Conv2d(in_channels,
num_filters,
stride=1,
kernel_size=1,
bias=False)
layers.append(
Bottleneck(in_channels,
num_filters // 4,
downsample=downsample))
in_channels = num_filters
return nn.Sequential(*layers)
def _make_subsample_layer(self, in_channels=96, num_layers=3, stride=2):
layers = []
for i in range(num_layers):
layers.append(
nn.Conv2d(in_channels=in_channels,
out_channels=2 * in_channels,
kernel_size=3,
stride=stride,
padding=1))
in_channels = 2 * in_channels
layers.append(nn.BatchNorm2d(in_channels, momentum=0.1))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def forward(self, x):
"""Forward function."""
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_cfg['num_branches']):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
x_list = []
for i in range(self.stage3_cfg['num_branches']):
if self.transition2[i] is not None:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
x_list = []
for i in range(self.stage4_cfg['num_branches']):
if self.transition3[i] is not None:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
x3 = self.subsample_3(x_list[1])
x2 = self.subsample_2(x_list[2])
x1 = x_list[3]
xf = self.conv_layers(torch.cat([x3, x2, x1], dim=1))
xf = xf.mean(dim=(2, 3))
xf = xf.view(xf.size(0), -1)
return xf
|