File size: 46,864 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
import math
import random
from collections import Iterable

import cv2
import mmcv
import numpy as np

from detrsmpl.utils.demo_utils import xywh2xyxy, xyxy2xywh
from detrsmpl.core.conventions.keypoints_mapping import get_flip_pairs
from detrsmpl.utils.transforms import aa_to_rotmat, rotmat_to_aa
from ..builder import PIPELINES
from .compose import Compose


def get_affine_transform(center,
                         scale,
                         rot,
                         output_size,
                         shift=(0., 0.),
                         inv=False,
                         pixel_std=1.0):
    """Get the affine transform matrix, given the center/scale/rot/output_size.

    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ] | list(2,)): Size of the
            destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)
    Returns:
        np.ndarray: The transform matrix.
    """
    assert len(center) == 2
    assert len(scale) == 2
    assert len(output_size) == 2
    assert len(shift) == 2

    scale_tmp = scale * pixel_std

    shift = np.array(shift)
    src_h = scale_tmp[1]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = rotate_point([0., src_h * -0.5], rot_rad)
    dst_dir = np.array([0., dst_h * -0.5])

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def affine_transform(pt, trans_mat):
    """Apply an affine transformation to the points.

    Args:
        pt (np.ndarray): a 2 dimensional point to be transformed
        trans_mat (np.ndarray): 2x3 matrix of an affine transform
    Returns:
        np.ndarray: Transformed points.
    """
    if pt.ndim == 2:
        new_pt = np.einsum('ij,mj->im', pt, trans_mat)
    elif pt.ndim == 3:
        new_pt = np.einsum('nij,mj->nim', pt, trans_mat)
    else:
        msg = f'Expected pt to have ndim of 2 or 3, but get {pt.ndim} '
        raise ValueError(msg)
    # new_pt = np.array(trans_mat) @ np.array([pt[0], pt[1], 1.])

    return new_pt


def _get_3rd_point(a, b):
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.

    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.
    Args:
        a (np.ndarray): point(x,y)
        b (np.ndarray): point(x,y)
    Returns:
        np.ndarray: The 3rd point.
    """
    assert len(a) == 2
    assert len(b) == 2
    direction = a - b
    third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)

    return third_pt


def rotate_point(pt, angle_rad):
    """Rotate a point by an angle.

    Args:
        pt (list[float]): 2 dimensional point to be rotated
        angle_rad (float): rotation angle by radian
    Returns:
        list[float]: Rotated point.
    """
    assert len(pt) == 2
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    new_x = pt[0] * cs - pt[1] * sn
    new_y = pt[0] * sn + pt[1] * cs
    rotated_pt = [new_x, new_y]

    return rotated_pt


def get_warp_matrix(theta, size_input, size_dst, size_target):
    """Calculate the transformation matrix under the constraint of unbiased.

    Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
    Data Processing for Human Pose Estimation (CVPR 2020).
    Args:
        theta (float): Rotation angle in degrees.
        size_input (np.ndarray): Size of input image [w, h].
        size_dst (np.ndarray): Size of output image [w, h].
        size_target (np.ndarray): Size of ROI in input plane [w, h].
    Returns:
        matrix (np.ndarray): A matrix for transformation.
    """
    theta = np.deg2rad(theta)
    matrix = np.zeros((2, 3), dtype=np.float32)
    scale_x = size_dst[0] / size_target[0]
    scale_y = size_dst[1] / size_target[1]
    matrix[0, 0] = math.cos(theta) * scale_x
    matrix[0, 1] = -math.sin(theta) * scale_x
    matrix[0, 2] = scale_x * (-0.5 * size_input[0] * math.cos(theta) +
                              0.5 * size_input[1] * math.sin(theta) +
                              0.5 * size_target[0])
    matrix[1, 0] = math.sin(theta) * scale_y
    matrix[1, 1] = math.cos(theta) * scale_y
    matrix[1, 2] = scale_y * (-0.5 * size_input[0] * math.sin(theta) -
                              0.5 * size_input[1] * math.cos(theta) +
                              0.5 * size_target[1])
    return matrix


def warp_affine_joints(joints, mat):
    """Apply affine transformation defined by the transform matrix on the
    joints.

    Args:
        joints (np.ndarray[..., 2]): Origin coordinate of joints.
        mat (np.ndarray[3, 2]): The affine matrix.
    Returns:
        matrix (np.ndarray[..., 2]): Result coordinate of joints.
    """
    joints = np.array(joints)
    shape = joints.shape
    joints = joints.reshape(-1, 2)
    return np.dot(np.concatenate((joints, joints[:, 0:1] * 0 + 1), axis=1),
                  mat.T).reshape(shape)


def _construct_rotation_matrix(rot, size=3):
    """Construct the in-plane rotation matrix.

    Args:
        rot (float): Rotation angle (degree).
        size (int): The size of the rotation matrix.
            Candidate Values: 2, 3. Defaults to 3.
    Returns:
        rot_mat (np.ndarray([size, size]): Rotation matrix.
    """
    rot_mat = np.eye(size, dtype=np.float32)
    if rot != 0:
        rot_rad = np.deg2rad(rot)
        sn, cs = np.sin(rot_rad), np.cos(rot_rad)
        rot_mat[0, :2] = [cs, -sn]
        rot_mat[1, :2] = [sn, cs]

    return rot_mat


def _flip_smpl_pose(pose):
    """Flip SMPL pose parameters horizontally.

    Args:
        pose (np.ndarray([72])): SMPL pose parameters
    Returns:
        pose_flipped
    """

    flippedParts = [
        0, 1, 2, 6, 7, 8, 3, 4, 5, 9, 10, 11, 15, 16, 17, 12, 13, 14, 18, 19,
        20, 24, 25, 26, 21, 22, 23, 27, 28, 29, 33, 34, 35, 30, 31, 32, 36, 37,
        38, 42, 43, 44, 39, 40, 41, 45, 46, 47, 51, 52, 53, 48, 49, 50, 57, 58,
        59, 54, 55, 56, 63, 64, 65, 60, 61, 62, 69, 70, 71, 66, 67, 68
    ]
    pose_flipped = pose[..., flippedParts]
    # Negate the second and the third dimension of the axis-angle
    pose_flipped[..., 1::3] = -pose_flipped[..., 1::3]
    pose_flipped[..., 2::3] = -pose_flipped[..., 2::3]
    return pose_flipped


def _flip_smplx_pose(pose):
    """Flip SMPLX pose parameters horizontally.

    Args:
        pose (np.ndarray([63])): SMPLX pose parameters
    Returns:
        pose_flipped (np.ndarray([21,3]))
    """
    flippedParts = np.array([
        6, 7, 8, 3, 4, 5, 9, 10, 11, 15, 16, 17, 12, 13, 14, 18, 19, 20, 24,
        25, 26, 21, 22, 23, 27, 28, 29, 33, 34, 35, 30, 31, 32, 36, 37, 38, 42,
        43, 44, 39, 40, 41, 45, 46, 47, 51, 52, 53, 48, 49, 50, 57, 58, 59, 54,
        55, 56, 63, 64, 65, 60, 61, 62
    ],
                            dtype=np.int32) - 3
    dim_flip = np.array([1, -1, -1], dtype=pose.dtype)
    pose = (pose[..., flippedParts].reshape(-1, 21, 3) * dim_flip).copy()
    return pose


def _flip_axis_angle(r):
    """Flip axis_angle horizontally.

    Args:
        r (np.ndarray([3]))
    Returns:
        f_flipped
    """
    dim_flip = np.array([1, -1, -1], dtype=r.dtype)
    r = r * dim_flip
    return r


def _flip_hand_pose(r_pose, l_pose):
    dim_flip = np.array([1, -1, -1], dtype=r_pose.dtype)
    ret_l_pose = r_pose * dim_flip
    ret_r_pose = l_pose * dim_flip
    return ret_r_pose, ret_l_pose


def _flip_keypoints(keypoints, flip_pairs, img_width=None):
    """Flip human joints horizontally.

    Note:
        num_keypoints: K
        num_dimension: D
    Args:
        keypoints (np.ndarray([K, D])): Coordinates of keypoints.
        flip_pairs (list[tuple()]): Pairs of keypoints which are mirrored
            (for example, left ear -- right ear).
        img_width (int | None, optional): The width of the original image.
            To flip 2D keypoints, image width is needed. To flip 3D keypoints,
            we simply negate the value of x-axis. Default: None.
    Returns:
        keypoints_flipped
    """

    keypoints_flipped = keypoints.copy()

    # Swap left-right parts
    for left, right in flip_pairs:
        keypoints_flipped[..., left, :] = keypoints[..., right, :]
        keypoints_flipped[..., right, :] = keypoints[..., left, :]

    # Flip horizontally
    if img_width is None:
        keypoints_flipped[..., 0] = -keypoints_flipped[..., 0]
    else:
        keypoints_flipped[..., 0] = img_width - 1 - keypoints_flipped[..., 0]

    return keypoints_flipped


def _rotate_joints_3d(joints_3d, rot):
    """Rotate the 3D joints in the local coordinates.

    Notes:
        Joints number: K
    Args:
        joints_3d (np.ndarray([K, 3])): Coordinates of keypoints.
        rot (float): Rotation angle (degree).
    Returns:
        joints_3d_rotated
    """
    # in-plane rotation
    # 3D joints are rotated counterclockwise,
    # so the rot angle is inversed.
    rot_mat = _construct_rotation_matrix(-rot, 3)
    if joints_3d.ndim == 2:
        joints_3d_rotated = np.einsum('ij,kj->ki', rot_mat, joints_3d)
    elif joints_3d.ndim == 3:
        joints_3d_rotated = np.einsum('ij,mkj->mki', rot_mat, joints_3d)
    else:
        msg = 'Expected joints_3d to have ndim of 2 or 3, '
        f'but get {joints_3d.ndim}.'
        raise ValueError(msg)
    joints_3d_rotated = joints_3d_rotated.astype('float32')
    return joints_3d_rotated


def _rotate_smpl_pose(pose, rot):
    """Rotate SMPL pose parameters.

    SMPL (https://smpl.is.tue.mpg.de/) is a 3D
    human model.
    Args:
        pose (np.ndarray([72])): SMPL pose parameters
        rot (float): Rotation angle (degree).
    Returns:
        pose_rotated
    """
    pose_rotated = pose.copy()
    if rot != 0:
        # rot_mat = _construct_rotation_matrix(-rot)
        # orient = pose[:3]
        # # find the rotation of the body in camera frame
        # per_rdg, _ = cv2.Rodrigues(orient.astype(np.float32))
        # # apply the global rotation to the global orientation
        # res_rot, _ = cv2.Rodrigues(np.dot(rot_mat, per_rdg))
        # pose_rotated[:3] = (res_rot.T)[0]

        # use pytorch3d
        rot_mat = _construct_rotation_matrix(-rot)
        orient = pose[..., :3]
        per_rdg = aa_to_rotmat(orient)

        if pose.ndim == 1:
            tmp_rot = np.einsum('ij,jk->ik', rot_mat, per_rdg)
        elif pose.ndim == 2:
            tmp_rot = np.einsum('ij,mjk->mik', rot_mat, per_rdg)
        else:
            msg = f'Expected pose to have ndim of 2 or 3, but get {pose.ndim} '
            raise ValueError(msg)

        res_rot = rotmat_to_aa(tmp_rot)
        pose_rotated[..., :3] = res_rot

        # use cv2
        # rot_mat = _construct_rotation_matrix(-rot)
        # for i in range(pose.shape[0]):
        #     orient = pose[i, :3]
        #     # find the rotation of the body in camera frame
        #     per_rdg, _ = cv2.Rodrigues(orient.astype(np.float32))
        #     # apply the global rotation to the global orientation
        #     res_rot, _ = cv2.Rodrigues(np.dot(rot_mat, per_rdg))
        #     pose_rotated[i, :3] = (res_rot.T)[0]

    return pose_rotated


def _bbox_flip(bboxes, img_shape, direction):
    """Flip bboxes horizontally.

    Args:
        bboxes (numpy.ndarray): Bounding boxes, shape (..., 4*k)
        img_shape (tuple[int]): Image shape (height, width)
        direction (str): Flip direction. Options are 'horizontal',
            'vertical'.

    Returns:
        numpy.ndarray: Flipped bounding boxes.
    """

    assert bboxes.shape[-1] % 5 == 0
    flipped = bboxes.copy()
    if direction == 'horizontal':
        w = img_shape[1]
        flipped[..., 0::4] = w - bboxes[..., 2::4]
        flipped[..., 2::4] = w - bboxes[..., 0::4]
    elif direction == 'vertical':
        h = img_shape[0]
        flipped[..., 1::4] = h - bboxes[..., 3::4]
        flipped[..., 3::4] = h - bboxes[..., 1::4]
    elif direction == 'diagonal':
        w = img_shape[1]
        h = img_shape[0]
        flipped[..., 0::4] = w - bboxes[..., 2::4]
        flipped[..., 1::4] = h - bboxes[..., 3::4]
        flipped[..., 2::4] = w - bboxes[..., 0::4]
        flipped[..., 3::4] = h - bboxes[..., 1::4]
    else:
        raise ValueError(f"Invalid flipping direction '{direction}'")
    return flipped


@PIPELINES.register_module()
class RandomHorizontalFlip(object):
    """Flip the image randomly.

    Flip the image randomly based on flip probaility.

    Args:
        flip_prob (float): probability of the image being flipped. Default: 0.5
    """
    def __init__(self, flip_prob=0.5, convention=None):
        assert 0 <= flip_prob <= 1
        self.flip_prob = flip_prob
        self.flip_pairs = get_flip_pairs(convention)

    def __call__(self, results):
        """Call function to flip image and annotations.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip' key is added into
                result dict.
        """
        if np.random.rand() > self.flip_prob:
            results['is_flipped'] = np.array([0])
            return results

        results['is_flipped'] = np.array([1])

        # flip image
        for key in results.get('img_fields', ['img']):
            results[key] = mmcv.imflip(results[key], direction='horizontal')

        # flip keypoints2d
        if 'keypoints2d' in results:
            assert self.flip_pairs is not None
            width = results['img'][:, ::-1, :].shape[1]
            keypoints2d = results['keypoints2d'].copy()
            keypoints2d = _flip_keypoints(keypoints2d, self.flip_pairs, width)
            results['keypoints2d'] = keypoints2d
        elif 'keypoints2d_ori' in results:
            assert self.flip_pairs is not None
            width = results['img'][:, ::-1, :].shape[1]
            keypoints2d = results['keypoints2d_ori'].copy()
            keypoints2d = _flip_keypoints(keypoints2d, self.flip_pairs, width)
            results['keypoints2d_ori'] = keypoints2d

        if 'keypoints2d_smpl' in results:
            assert self.flip_pairs is not None
            width = results['img'][:, ::-1, :].shape[1]
            keypoints2d = results['keypoints2d_smpl'].copy()
            keypoints2d = _flip_keypoints(keypoints2d, self.flip_pairs, width)
            results['keypoints2d_smpl'] = keypoints2d

        # flip bbox center
        center = results['center']
        center[..., 0] = width - 1 - center[..., 0]
        results['center'] = center

        # flip keypoints3d
        if 'keypoints3d' in results:
            assert self.flip_pairs is not None
            keypoints3d = results['keypoints3d'].copy()
            keypoints3d = _flip_keypoints(keypoints3d, self.flip_pairs)
            results['keypoints3d'] = keypoints3d
        elif 'keypoints3d_ori' in results:
            assert self.flip_pairs is not None
            keypoints3d = results['keypoints3d_ori'].copy()
            keypoints3d = _flip_keypoints(keypoints3d, self.flip_pairs)
            results['keypoints3d_ori'] = keypoints3d

        if 'keypoints3d_smpl' in results:
            assert self.flip_pairs is not None
            keypoints3d = results['keypoints3d_smpl'].copy()
            keypoints3d = _flip_keypoints(keypoints3d, self.flip_pairs)
            results['keypoints3d_smpl'] = keypoints3d

        if 'bbox_xywh' in results:
            width = results['img'].shape[1]
            bbox_xywh = results['bbox_xywh'].copy()
            bbox_xyxy = xywh2xyxy(bbox_xywh)

            bbox_xyxy = bbox_xyxy[:, [2, 1, 0, 3]] * np.array(
                [-1, 1, -1, 1]) + np.array([width, 0, width, 0])

            # img = mmcv.imshow_bboxes(results['img'], bbox_xyxy, show=False)
            # cv2.imwrite('test.png',img)
            results['bbox_xywh'] = xyxy2xywh(bbox_xyxy)

        # flip smpl
        if 'smpl_body_pose' in results:
            global_orient = results['smpl_global_orient'].copy()
            body_pose = results['smpl_body_pose'].copy().reshape((-1, 23 * 3))
            smpl_pose = np.concatenate((global_orient, body_pose), axis=-1)
            smpl_pose_flipped = _flip_smpl_pose(smpl_pose)
            global_orient = smpl_pose_flipped[..., :3]
            body_pose = smpl_pose_flipped[..., 3:]
            results['smpl_global_orient'] = global_orient
            results['smpl_body_pose'] = body_pose.reshape((-1, 23, 3))

        # TODO: to check multi-human for smplx
        if 'smplx_body_pose' in results:

            body_pose = results['smplx_body_pose'].copy().reshape((-1))
            body_pose_flipped = _flip_smplx_pose(body_pose)
            results['smplx_body_pose'] = body_pose_flipped

        if 'smplx_global_orient' in results:
            global_orient = results['smplx_global_orient'].copy().reshape((-1))
            global_orient_flipped = _flip_axis_angle(global_orient)
            results['smplx_global_orient'] = global_orient_flipped

        if 'smplx_jaw_pose' in results:
            jaw_pose = results['smplx_jaw_pose'].copy().reshape((-1))
            jaw_pose_flipped = _flip_axis_angle(jaw_pose)
            results['smplx_jaw_pose'] = jaw_pose_flipped

        if 'smplx_right_hand_pose' in results:
            right_hand_pose = results['smplx_right_hand_pose'].copy()
            left_hand_pose = results['smplx_left_hand_pose'].copy()
            results['smplx_right_hand_pose'], results[
                'smplx_left_hand_pose'] = _flip_hand_pose(
                    right_hand_pose, left_hand_pose)

        # Expressions are not symmetric. Remove them when flipped.
        if 'smplx_expression' in results:
            results['smplx_expression'] = np.zeros(
                (results['smplx_expression'].shape[0]), dtype=np.float32)
            results['has_smplx_expression'] = 0

        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(flip_prob={self.flip_prob})'


def resize(ori_shape, size, max_size=None):
    # size can be min_size (scalar) or (w, h) tuple
    # import ipdb; ipdb.set_trace(context=15)
    def get_size_with_aspect_ratio(image_size, size, max_size=None):
        w, h = image_size
        if max_size is not None:
            min_original_size = float(min((w, h)))
            max_original_size = float(max((w, h)))
            if max_original_size / min_original_size * size > max_size:
                size = int(
                    round(max_size * min_original_size / max_original_size))

        if (w <= h and w == size) or (h <= w and h == size):
            return (w, h)

        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)

        return (ow, oh)

    def get_size(ori_shape, size, max_size=None):
        if isinstance(size, (list, tuple)):
            return size[::-1]
        else:
            return get_size_with_aspect_ratio(ori_shape, size, max_size)

    size = get_size(ori_shape, size, max_size)

    return size


@PIPELINES.register_module()
class CenterCrop(object):
    r"""Center crop the image.

    Args:
        crop_size (int | tuple): Expected size after cropping with the format
            of (h, w).
        efficientnet_style (bool): Whether to use efficientnet style center
            crop. Defaults to False.
        crop_padding (int): The crop padding parameter in efficientnet style
            center crop. Only valid if efficientnet style is True. Defaults to
            32.
        interpolation (str): Interpolation method, accepted values are
            'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Only valid if
             efficientnet style is True. Defaults to 'bilinear'.
        backend (str): The image resize backend type, accpeted values are
            `cv2` and `pillow`. Only valid if efficientnet style is True.
            Defaults to `cv2`.


    Notes:
        If the image is smaller than the crop size, return the original image.
        If efficientnet_style is set to False, the pipeline would be a simple
        center crop using the crop_size.
        If efficientnet_style is set to True, the pipeline will be to first to
        perform the center crop with the crop_size_ as:

        .. math::
        crop\_size\_ = crop\_size / (crop\_size + crop\_padding) * short\_edge

        And then the pipeline resizes the img to the input crop size.
    """
    def __init__(self,
                 crop_size,
                 efficientnet_style=False,
                 crop_padding=32,
                 interpolation='bilinear',
                 backend='cv2'):
        if efficientnet_style:
            assert isinstance(crop_size, int)
            assert crop_padding >= 0
            assert interpolation in ('nearest', 'bilinear', 'bicubic', 'area',
                                     'lanczos')
            if backend not in ['cv2', 'pillow']:
                raise ValueError(
                    f'backend: {backend} is not supported for '
                    'resize. Supported backends are "cv2", "pillow"')
        else:
            assert isinstance(crop_size, int) or (isinstance(crop_size, tuple)
                                                  and len(crop_size) == 2)
        if isinstance(crop_size, int):
            crop_size = (crop_size, crop_size)
        assert crop_size[0] > 0 and crop_size[1] > 0
        self.crop_size = crop_size
        self.efficientnet_style = efficientnet_style
        self.crop_padding = crop_padding
        self.interpolation = interpolation
        self.backend = backend

    def __call__(self, results):
        crop_height, crop_width = self.crop_size[0], self.crop_size[1]
        for key in results.get('img_fields', ['img']):
            img = results[key]
            # img.shape has length 2 for grayscale, length 3 for color
            img_height, img_width = img.shape[:2]

            # https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/preprocessing.py#L118 # noqa
            if self.efficientnet_style:
                img_short = min(img_height, img_width)
                crop_height = crop_height / (crop_height +
                                             self.crop_padding) * img_short
                crop_width = crop_width / (crop_width +
                                           self.crop_padding) * img_short

            y1 = max(0, int(round((img_height - crop_height) / 2.)))
            x1 = max(0, int(round((img_width - crop_width) / 2.)))
            y2 = min(img_height, y1 + crop_height) - 1
            x2 = min(img_width, x1 + crop_width) - 1

            # crop the image
            img = mmcv.imcrop(img, bboxes=np.array([x1, y1, x2, y2]))

            if self.efficientnet_style:
                img = mmcv.imresize(img,
                                    tuple(self.crop_size[::-1]),
                                    interpolation=self.interpolation,
                                    backend=self.backend)
            img_shape = img.shape
            results[key] = img
        results['img_shape'] = img_shape

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size}'
        repr_str += f', efficientnet_style={self.efficientnet_style}'
        repr_str += f', crop_padding={self.crop_padding}'
        repr_str += f', interpolation={self.interpolation}'
        repr_str += f', backend={self.backend})'
        return repr_str


@PIPELINES.register_module()
class Normalize(object):
    """Normalize the image.

    Args:
        mean (sequence): Mean values of 3 channels.
        std (sequence): Std values of 3 channels.
        to_rgb (bool): Whether to convert the image from BGR to RGB,
            default is true.
    """
    def __init__(self, mean, std, to_rgb=True):
        self.mean = np.array(mean, dtype=np.float32)
        self.std = np.array(std, dtype=np.float32)
        self.to_rgb = to_rgb

    def __call__(self, results):
        for key in results.get('img_fields', ['img']):
            results[key] = mmcv.imnormalize(results[key], self.mean, self.std,
                                            self.to_rgb)
        results['img_norm_cfg'] = dict(mean=self.mean,
                                       std=self.std,
                                       to_rgb=self.to_rgb)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(mean={list(self.mean)}, '
        repr_str += f'std={list(self.std)}, '
        repr_str += f'to_rgb={self.to_rgb})'
        return repr_str


@PIPELINES.register_module()
class ColorJitter(object):
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
        brightness (float): How much to jitter brightness.
            brightness_factor is chosen uniformly from
            [max(0, 1 - brightness), 1 + brightness].
        contrast (float): How much to jitter contrast.
            contrast_factor is chosen uniformly from
            [max(0, 1 - contrast), 1 + contrast].
        saturation (float): How much to jitter saturation.
            saturation_factor is chosen uniformly from
            [max(0, 1 - saturation), 1 + saturation].
    """
    def __init__(self, brightness, contrast, saturation):
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation

    def __call__(self, results):
        brightness_factor = random.uniform(0, self.brightness)
        contrast_factor = random.uniform(0, self.contrast)
        saturation_factor = random.uniform(0, self.saturation)
        color_jitter_transforms = [
            dict(type='Brightness',
                 magnitude=brightness_factor,
                 prob=1.,
                 random_negative_prob=0.5),
            dict(type='Contrast',
                 magnitude=contrast_factor,
                 prob=1.,
                 random_negative_prob=0.5),
            dict(type='ColorTransform',
                 magnitude=saturation_factor,
                 prob=1.,
                 random_negative_prob=0.5)
        ]
        random.shuffle(color_jitter_transforms)
        transform = Compose(color_jitter_transforms)
        return transform(results)

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(brightness={self.brightness}, '
        repr_str += f'contrast={self.contrast}, '
        repr_str += f'saturation={self.saturation})'
        return repr_str


@PIPELINES.register_module()
class Lighting(object):
    """Adjust images lighting using AlexNet-style PCA jitter.

    Args:
        eigval (list): the eigenvalue of the convariance matrix of pixel
            values, respectively.
        eigvec (list[list]): the eigenvector of the convariance matrix of pixel
            values, respectively.
        alphastd (float): The standard deviation for distribution of alpha.
            Defaults to 0.1
        to_rgb (bool): Whether to convert img to rgb.
    """
    def __init__(self, eigval, eigvec, alphastd=0.1, to_rgb=True):
        assert isinstance(eigval, list), \
            f'eigval must be of type list, got {type(eigval)} instead.'
        assert isinstance(eigvec, list), \
            f'eigvec must be of type list, got {type(eigvec)} instead.'
        for vec in eigvec:
            assert isinstance(vec, list) and len(vec) == len(eigvec[0]), \
                'eigvec must contains lists with equal length.'
        self.eigval = np.array(eigval)
        self.eigvec = np.array(eigvec)
        self.alphastd = alphastd
        self.to_rgb = to_rgb

    def __call__(self, results):
        for key in results.get('img_fields', ['img']):
            img = results[key]
            results[key] = mmcv.adjust_lighting(img,
                                                self.eigval,
                                                self.eigvec,
                                                alphastd=self.alphastd,
                                                to_rgb=self.to_rgb)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(eigval={self.eigval.tolist()}, '
        repr_str += f'eigvec={self.eigvec.tolist()}, '
        repr_str += f'alphastd={self.alphastd}, '
        repr_str += f'to_rgb={self.to_rgb})'
        return repr_str


@PIPELINES.register_module()
class RandomChannelNoise:
    """Data augmentation with random channel noise.

    Required keys: 'img'
    Modifies key: 'img'
    Args:
        noise_factor (float): Multiply each channel with
         a factor between``[1-scale_factor, 1+scale_factor]``
    """
    def __init__(self, noise_factor=0.4):
        self.noise_factor = noise_factor

    def __call__(self, results):
        """Perform data augmentation with random channel noise."""
        img = results['img']

        # Each channel is multiplied with a number
        # in the area [1-self.noise_factor, 1+self.noise_factor]
        pn = np.random.uniform(1 - self.noise_factor, 1 + self.noise_factor,
                               (1, 3))
        img = cv2.multiply(img, pn)

        results['img'] = img

        if 'ori_img' in results:
            img = results['ori_img']
            img = cv2.multiply(img, pn)

            results['ori_img'] = img

        return results


@PIPELINES.register_module()
class GetRandomScaleRotation:
    """Data augmentation with random scaling & rotating.

    Required key: 'scale'. Modifies key: 'scale' and 'rotation'.
    Args:
        rot_factor (int): Rotating to ``[-2*rot_factor, 2*rot_factor]``.
        scale_factor (float): Scaling to ``[1-scale_factor, 1+scale_factor]``.
        rot_prob (float): Probability of random rotation.
    """
    def __init__(self, rot_factor=30, scale_factor=0.25, rot_prob=0.6):
        self.rot_factor = rot_factor
        self.scale_factor = scale_factor
        self.rot_prob = rot_prob

    def __call__(self, results):
        """Perform data augmentation with random scaling & rotating."""
        s = results['scale']

        sf = self.scale_factor
        rf = self.rot_factor

        s_factor = np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
        s = s * s_factor

        r_factor = np.clip(np.random.randn() * rf, -rf * 2, rf * 2)
        r = r_factor if np.random.rand() <= self.rot_prob else 0.0

        results['scale'] = s
        results['rotation'] = r

        return results


@PIPELINES.register_module()
class SampleInstance:
    def __init__(self, sample_ratio):
        self.sample_ratio = sample_ratio

    def __call__(self, results):
        

        assert 'bbox_xywh' in results
        bbox_xywh = results['bbox_xywh'].copy()
        crop_person_number = len(bbox_xywh)
        if random.random() < self.sample_ratio:
            crop_person_number = np.random.randint(len(bbox_xywh)) + 1

        sample_ids = np.array(
            random.sample(list(range(len(bbox_xywh))), crop_person_number))

        bbox_xyxy = xywh2xyxy(bbox_xywh)[sample_ids]

        leftTop_ = bbox_xyxy[:, :2]
        leftTop_ = np.array([np.min(leftTop_[:, 0]), np.min(leftTop_[:, 1])])
        rightBottom_ = bbox_xyxy[:, 2:4]
        rightBottom_ = np.array(
            [np.max(rightBottom_[:, 0]),
             np.max(rightBottom_[:, 1])])
        bbox_xyxy = np.concatenate([leftTop_, rightBottom_])
        results['bbox_xyxy'] = bbox_xyxy
        center = (rightBottom_ + leftTop_) / 2
        scale = (rightBottom_ - leftTop_)
        scale[0] = scale[1] = max(scale)
        results['center'] = center
        results['scale'] = scale
        return results

        


@PIPELINES.register_module()
class MeshAffine:
    """Affine transform the image to get input image.

    Affine transform the 2D keypoints, 3D kepoints. Required keys: 'img',
    'pose', 'img_shape', 'rotation' and 'center'. Modifies key: 'img',
    ''keypoints2d', 'keypoints3d', 'pose'.
    """
    def __init__(self, img_res, crop_with_bbox=True):
        if isinstance(img_res, tuple):
            self.image_size = img_res
        else:
            self.image_size = np.array([img_res, img_res])
        self.img_res = img_res
        self.crop_with_bbox = crop_with_bbox

    def __call__(self, results):

        c = results['center']
        s = results['scale']
        r = results['rotation']

        trans = get_affine_transform(c, s, r, self.image_size)

        if 'img' in results:
            img = results['img'].copy()

            # img before affine
            ori_img = img.copy()
            results['crop_transform'] = trans
            results['ori_img'] = ori_img
            results['img_fields'] = ['img', 'ori_img']

            img = cv2.warpAffine(
                img,
                trans, (int(self.image_size[0]), int(self.image_size[1])),
                flags=cv2.INTER_LINEAR)
            results['img'] = img

        if 'keypoints2d' in results:
            keypoints2d = results['keypoints2d'].copy()

            results['keypoints2d'][..., :2] = affine_transform(
                keypoints2d, trans)
        if 'bbox_xywh' in results:
            bbox_xywh = results['bbox_xywh'].copy()

            leftTop = bbox_xywh[..., :2]
            rightTop = np.concatenate([
                bbox_xywh[..., [0]] + bbox_xywh[..., [2]], bbox_xywh[..., [1]]
            ], -1)
            leftBottom = np.concatenate([
                bbox_xywh[..., [0]], bbox_xywh[..., [1]] + bbox_xywh[..., [3]]
            ], -1)
            rightBottom = np.concatenate([
                bbox_xywh[..., [0]] + bbox_xywh[..., [2]],
                bbox_xywh[..., [1]] + bbox_xywh[..., [3]]
            ], -1)

            bbox_point = np.vstack(
                [leftTop, rightTop, leftBottom, rightBottom])
            bbox_point = np.concatenate(
                [bbox_point, np.ones_like(bbox_point[..., [0]])], -1)
            bbox_point = affine_transform(bbox_point, trans)
            # TODO:
            bbox_point = np.clip(bbox_point, 0, self.img_res)
            bbox__xywh_t = bbox_point.clone()
            bbox__xywh_t
            results['bbox'] = bbox_point

            # bbox_xyxy = xywh2xyxy(bbox_xywh)[:,:4].reshape(-1, 2, 2)
            # bbox_xyxy = np.concatenate([bbox_xyxy, np.ones_like(bbox_xyxy[...,[0]])], -1)
            # bbox_xyxy = np.concatenate([affine_transform(bbox_xyxy, trans).reshape(-1,4), bbox_xywh[...,[-1]]],-1)
            # results['bbox_xywh'] = xyxy2xywh(bbox_xyxy)

            #     image_array=np.array([img]),
            #     overwrite=True,
            #     data_source='smpl_54')
        if 'keypoints3d' in results:
            keypoints3d = results['keypoints3d'].copy()
            keypoints3d[..., :3] = _rotate_joints_3d(keypoints3d[..., :3], r)
            results['keypoints3d'] = keypoints3d

        if 'smpl_body_pose' in results:
            global_orient = results['smpl_global_orient'].copy()
            body_pose = results['smpl_body_pose'].copy().reshape((-1, 23 * 3))
            pose = np.concatenate((global_orient, body_pose), axis=-1)
            pose = _rotate_smpl_pose(pose, r)
            results['smpl_global_orient'] = pose[..., :3]
            results['smpl_body_pose'] = pose[..., 3:].reshape((-1, 23, 3))

        if 'smplx_global_orient' in results:
            global_orient = results['smplx_global_orient'].copy()
            global_orient = _rotate_smpl_pose(global_orient, r)
            results['smplx_global_orient'] = global_orient

        return results


@PIPELINES.register_module()
class MeshAffineED:
    """Affine transform the image to get input image.

    Affine transform the 2D keypoints, 3D kepoints. Required keys: 'img',
    'pose', 'img_shape', 'rotation' and 'center'. Modifies key: 'img',
    ''keypoints2d', 'keypoints3d', 'pose'.
    """
    def __init__(self, sizes, max_size=None):
        assert isinstance(sizes, (list, tuple))
        self.sizes = sizes
        self.max_size = max_size

    def __call__(self, results):
        ori_shape = np.array(results['ori_shape'])
        # ori_shape = ori_shape[::-1]
        # print(ori_shape)
        size = random.choice(self.sizes)
        reshape_size = resize(ori_shape, size, self.max_size)
        c = (ori_shape / 2)[::-1]
        s = ori_shape[::-1]
        r = results['rotation']

        trans = get_affine_transform(c, s, r, reshape_size[::-1])

        results['img_shape'] = reshape_size
        if 'img' in results:
            img = results['img'].copy()

            # img before affine
            ori_img = img.copy()
            results['crop_transform'] = trans
            results['ori_img'] = ori_img
            results['img_fields'] = ['img', 'ori_img']

            img = cv2.warpAffine(img,
                                 trans,
                                 (int(reshape_size[1]), int(reshape_size[0])),
                                 flags=cv2.INTER_LINEAR)
            results['img'] = img

        if 'keypoints2d_ori' in results:
            keypoints2d_ori = results['keypoints2d_ori'].copy()

            results['keypoints2d_ori'][..., :2] = affine_transform(
                keypoints2d_ori, trans)

        if 'keypoints2d_smpl' in results:
            keypoints2d_smpl = results['keypoints2d_smpl'].copy()

            results['keypoints2d_smpl'][..., :2] = affine_transform(
                keypoints2d_smpl, trans)

        if 'bbox_xywh' in results:
            bbox_xywh = results['bbox_xywh'].copy()

            leftTop = bbox_xywh[..., :2]
            rightTop = np.concatenate([
                bbox_xywh[..., [0]] + bbox_xywh[..., [2]], bbox_xywh[..., [1]]
            ], -1)
            leftBottom = np.concatenate([
                bbox_xywh[..., [0]], bbox_xywh[..., [1]] + bbox_xywh[..., [3]]
            ], -1)
            rightBottom = np.concatenate([
                bbox_xywh[..., [0]] + bbox_xywh[..., [2]],
                bbox_xywh[..., [1]] + bbox_xywh[..., [3]]
            ], -1)

            bbox_point = np.vstack(
                [leftTop, rightTop, leftBottom, rightBottom])
            bbox_point = np.concatenate(
                [bbox_point, np.ones_like(bbox_point[..., [0]])], -1)
            bbox_point = affine_transform(bbox_point, trans)
            # TODO:

            bbox_point = np.clip(bbox_point, 0,
                                 (int(reshape_size[1]), int(reshape_size[0])))
            results['bbox'] = bbox_point

            bbox_xyxy_t = bbox_xywh.copy()
            num_sample = bbox_xywh.shape[0]
            bbox_xyxy_t[..., :2] = bbox_point[:num_sample, :]
            bbox_xyxy_t[...,
                        2:4] = bbox_point[num_sample * 3:num_sample * 4, :]

            results['bbox_xywh'] = xyxy2xywh(bbox_xyxy_t)
            # bbox_xywh = results['bbox_xywh'].copy()
            # bbox_xyxy = xywh2xyxy(bbox_xywh)[:,:4].reshape(-1, 2, 2)
            # bbox_xyxy = np.concatenate([bbox_xyxy, np.ones_like(bbox_xyxy[...,[0]])], -1)
            # bbox_xyxy = np.concatenate([affine_transform(bbox_xyxy, trans).reshape(-1,4), bbox_xywh[...,[-1]]],-1)
            # results['bbox_xywh'] = xyxy2xywh(bbox_xyxy)

            #     image_array=np.array([img]),
            #     overwrite=True,
            #     data_source='smpl_54')
        if 'keypoints3d_ori' in results:
            keypoints3d_ori = results['keypoints3d_ori'].copy()
            keypoints3d_ori[..., :3] = _rotate_joints_3d(
                keypoints3d_ori[..., :3], r)
            results['keypoints3d_ori'] = keypoints3d_ori

        if 'keypoints3d_smpl' in results:
            keypoints3d_smpl = results['keypoints3d_smpl'].copy()
            keypoints3d_smpl[..., :3] = _rotate_joints_3d(
                keypoints3d_smpl[..., :3], r)
            results['keypoints3d_smpl'] = keypoints3d_smpl

        if 'smpl_body_pose' in results:
            global_orient = results['smpl_global_orient'].copy()
            body_pose = results['smpl_body_pose'].copy().reshape((-1, 23 * 3))
            pose = np.concatenate((global_orient, body_pose), axis=-1)
            pose = _rotate_smpl_pose(pose, r)
            results['smpl_global_orient'] = pose[..., :3]
            results['smpl_body_pose'] = pose[..., 3:].reshape((-1, 23, 3))

        if 'area' in results:
            area = results['area'] * (trans[0, 0] * trans[1, 1])
            results['area'] = area
        # if 'smplx_global_orient' in results:
        #     global_orient = results['smplx_global_orient'].copy()
        #     global_orient = _rotate_smpl_pose(global_orient, r)
        #     results['smplx_global_orient'] = global_orient

        return results


@PIPELINES.register_module()
class Rotation:
    """Rotate the image with the given rotation.

    Rotate the 2D keypoints, 3D kepoints, poses. Required keys: 'img',
    'pose', 'rotation' and 'center'. Modifies key: 'img',
    ''keypoints2d', 'keypoints3d', 'pose'.

    To avoid conflicts with MeshAffine, rotation will be set to 0.0
    after rotate the image.
    The rotation value will be stored to 'ori_rotation'.
    """
    def __init__(self):
        pass

    def __call__(self, results):
        r = results['rotation']
        if r == 0.0:
            return results
        img = results['img']

        # img before affine
        (h, w) = img.shape[:2]
        (cX, cY) = (w // 2, h // 2)
        M = cv2.getRotationMatrix2D((cX, cY), r, 1.0)
        cos = np.abs(M[0, 0])
        sin = np.abs(M[0, 1])
        # compute the new bounding dimensions of the image
        nW = int((h * sin) + (w * cos))
        nH = int((h * cos) + (w * sin))
        # adjust the rotation matrix to take into account translation
        M[0, 2] += (nW / 2) - cX
        M[1, 2] += (nH / 2) - cY
        # perform the actual rotation and return the image
        img = cv2.warpAffine(img, M, (nW, nH))

        results['img'] = img

        c = results['center']
        c = np.dot(M[:2, :2], c) + M[:2, 2]
        results['center'] = c

        if 'keypoints2d' in results:
            keypoints2d = results['keypoints2d'].copy()
            keypoints2d[:, :2] = (np.dot(keypoints2d[:, :2], M[:2, :2].T) +
                                  M[:2, 2] + 1).astype(np.int)
            results['keypoints2d'] = keypoints2d

        if 'keypoints3d' in results:
            keypoints3d = results['keypoints3d'].copy()
            keypoints3d[:, :3] = _rotate_joints_3d(keypoints3d[:, :3], r)
            results['keypoints3d'] = keypoints3d

        if 'smpl_body_pose' in results:
            global_orient = results['smpl_global_orient'].copy()
            body_pose = results['smpl_body_pose'].copy().reshape((-1))
            pose = np.concatenate((global_orient, body_pose), axis=-1)
            pose = _rotate_smpl_pose(pose, r)
            results['smpl_global_orient'] = pose[:3]
            results['smpl_body_pose'] = pose[3:].reshape((-1, 3))

        if 'smplx_global_orient' in results:
            global_orient = results['smplx_global_orient'].copy()
            global_orient = _rotate_smpl_pose(global_orient, r)
            results['smplx_global_orient'] = global_orient

        results['rotation'] = 0.0
        results['ori_rotation'] = r
        return results


@PIPELINES.register_module()
class BBoxCenterJitter(object):
    def __init__(self, factor=0.0, dist='normal'):
        super(BBoxCenterJitter, self).__init__()
        self.factor = factor
        self.dist = dist
        assert self.dist in [
            'normal', 'uniform'
        ], (f'Distribution must be normal or uniform, not {self.dist}')

    def __call__(self, results):
        # body model: no process
        if self.factor <= 1e-3:
            return results

        bbox_size = results['scale'][0]

        jitter = bbox_size * self.factor

        if self.dist == 'normal':
            center_jitter = np.random.randn(2) * jitter
        elif self.dist == 'uniform':
            center_jitter = np.random.rand(2) * 2 * jitter - jitter

        center = results['center']
        H, W = results['img_shape']
        new_center = center + center_jitter
        new_center[0] = np.clip(new_center[0], 0, W)
        new_center[1] = np.clip(new_center[1], 0, H)

        results['center'] = new_center
        return results


@PIPELINES.register_module()
class SimulateLowRes(object):
    def __init__(self,
                 dist: str = 'categorical',
                 factor: float = 1.0,
                 cat_factors=(1.0, ),
                 factor_min: float = 1.0,
                 factor_max: float = 1.0) -> None:
        self.factor_min = factor_min
        self.factor_max = factor_max
        self.dist = dist
        self.cat_factors = cat_factors
        assert dist in ['uniform', 'categorical']

    def _sample_low_res(self, image: np.ndarray) -> np.ndarray:
        """"""
        if self.dist == 'uniform':
            downsample = self.factor_min != self.factor_max
            if not downsample:
                return image
            factor = np.random.rand() * (self.factor_max -
                                         self.factor_min) + self.factor_min
        elif self.dist == 'categorical':
            if len(self.cat_factors) < 2:
                return image
            idx = np.random.randint(0, len(self.cat_factors))
            factor = self.cat_factors[idx]

        H, W, _ = image.shape
        downsampled_image = cv2.resize(image,
                                       (int(W // factor), int(H // factor)),
                                       cv2.INTER_NEAREST)
        resized_image = cv2.resize(downsampled_image, (W, H),
                                   cv2.INTER_LINEAR_EXACT)
        return resized_image

    def __call__(self, results):
        """"""
        img = results['img']
        img = self._sample_low_res(img)
        results['img'] = img

        return results