Spaces:
Running
on
L40S
Running
on
L40S
File size: 25,477 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
import glob
import os
import os.path as osp
import shutil
import warnings
from pathlib import Path
from typing import Iterable, List, Optional, Tuple, Union
import cv2
import numpy as np
from tqdm import tqdm
from detrsmpl.core.conventions.keypoints_mapping import KEYPOINTS_FACTORY
from detrsmpl.core.conventions.keypoints_mapping.human_data import (
HUMAN_DATA_LIMBS_INDEX,
HUMAN_DATA_PALETTE,
)
from detrsmpl.utils.demo_utils import get_different_colors
from detrsmpl.utils.ffmpeg_utils import images_to_video, video_to_images
from detrsmpl.utils.keypoint_utils import search_limbs
from detrsmpl.utils.path_utils import (
Existence,
check_input_path,
check_path_existence,
check_path_suffix,
prepare_output_path,
)
def _plot_kp2d_frame(kp2d_person: np.ndarray,
canvas: np.ndarray,
limbs: Union[list, dict,
np.ndarray] = HUMAN_DATA_LIMBS_INDEX,
palette: Optional[Union[dict, np.ndarray]] = None,
draw_bbox: bool = False,
with_number: bool = False,
font_size: Union[float, int] = 0.5,
disable_limbs: bool = False) -> np.ndarray:
"""Plot a single frame(array) with keypoints, limbs, bbox, index.
Args:
kp2d_person (np.ndarray): `np.ndarray` shape of (J * 2).
canvas (np.ndarray): cv2 image, (H * W * 3) array.
limbs (Union[list, dict, np.ndarray], optional): limbs in form of
`dict` or 2-dimensional `list` or `np.ndarray` of shape
(num_limb, 2).
`dict` is used mainly for function `visualize_kp2d`, you can also
get the limbs by function `search_limbs`.
Defaults to `HUMAN_DATA_LIMBS_INDEX`.
palette (Optional[Union[dict, np.ndarray, list]], optional):
Pass an (1, 3) `np.ndarray` or `list` [B, G, R] if want the whole
limbs and keypoints will be in same color.
Pass `None` to use our colorful palette.
Pass an (num_limb, 3) `np.ndarray` to get each limb your specific
color.
`dict` is used mainly for function `visualize_kp2d`, you can also
get the palette by function `search_limbs`.
Defaults to `HUMAN_DATA_PALETTE`.
draw_bbox (bool, optional): whether need to draw bounding boxes.
Defaults to False.
with_number (bool, optional): whether need to draw index numbers.
Defaults to False.
font_size (Union[float, int], optional): the font size of the index.
Defaults to 0.5.
disable_limbs (bool, optional): whether need to disable drawing limbs.
Defaults to False.
Returns:
np.ndarray: opencv image of shape (H * W * 3).
"""
# slice the kp2d array
kp2d_person = kp2d_person.copy()
if kp2d_person.shape[-1] >= 3:
kp2d_person = kp2d_person[..., :-1]
warnings.warn(
'The input array has more than 2-Dimensional coordinates, will'
'keep only the first 2-Dimensions of the last axis. The new'
f'array shape: {kp2d_person.shape}')
if kp2d_person.ndim == 3 and kp2d_person.shape[0] == 1:
kp2d_person = kp2d_person[0]
assert kp2d_person.ndim == 2 and kp2d_person.shape[
-1] == 2, f'Wrong input array shape {kp2d_person.shape}, \
should be (num_kp, 2)'
if draw_bbox:
bbox = _get_bbox(kp2d_person, canvas, expand=True)
else:
bbox = None
# determine the limb connections and palette
if not disable_limbs:
if isinstance(limbs, list):
limbs = {'body': limbs}
elif isinstance(limbs, np.ndarray):
limbs = {'body': limbs.reshape(-1, 2).astype(np.int32).tolist()}
else:
assert set(limbs.keys()).issubset(HUMAN_DATA_LIMBS_INDEX)
if palette is None:
palette = {'body': None}
elif isinstance(palette, dict):
assert set(palette.keys()) == set(limbs.keys())
else:
limbs = {'body': None}
# draw by part to specify the thickness and color
for part_name, part_limbs in limbs.items():
# scatter_points_index means the limb end points
if not disable_limbs:
scatter_points_index = list(
set(np.array([part_limbs]).reshape(-1).tolist()))
else:
scatter_points_index = list(range(len(kp2d_person)))
if isinstance(palette, dict) and part_name == 'body':
thickness = 2
radius = 3
color = get_different_colors(len(scatter_points_index))
elif disable_limbs and palette is None:
radius = 2
color = get_different_colors(len(scatter_points_index))
else:
thickness = 2
radius = 2
if isinstance(palette, np.ndarray):
color = palette.astype(np.int32)
elif isinstance(palette, dict):
color = np.array(palette[part_name]).astype(np.int32)
elif isinstance(palette, list):
color = np.array(palette).reshape(-1, 3).astype(np.int32)
if not disable_limbs:
for limb_index, limb in enumerate(part_limbs):
limb_index = min(limb_index, len(color) - 1)
cv2.line(canvas,
tuple(kp2d_person[limb[0]].astype(np.int32)),
tuple(kp2d_person[limb[1]].astype(np.int32)),
color=tuple(color[limb_index].tolist()),
thickness=thickness)
# draw the points inside the image region
for index in scatter_points_index:
x, y = kp2d_person[index, :2]
if np.isnan(x) or np.isnan(y):
continue
if 0 <= x < canvas.shape[1] and 0 <= y < canvas.shape[0]:
if disable_limbs:
point_color = color[index].tolist()
else:
point_color = color[min(color.shape[0] - 1,
len(scatter_points_index) -
1)].tolist()
cv2.circle(canvas, (int(x), int(y)),
radius,
point_color,
thickness=-1)
if with_number:
cv2.putText(
canvas, str(index), (int(x), int(y)),
cv2.FONT_HERSHEY_SIMPLEX, font_size,
np.array([255, 255, 255]).astype(np.int32).tolist(), 2)
# draw the bboxes
if bbox is not None:
bbox = bbox.astype(np.int32)
cv2.rectangle(canvas, (bbox[0], bbox[2]), (bbox[1], bbox[3]),
(0, 255, 255), 1)
return canvas
def _get_bbox(keypoint_np: np.ndarray,
img_mat: Optional[np.ndarray] = None,
expand: bool = False):
"""get bbox of kp2d."""
x_max = np.max(keypoint_np[:, 0])
x_min = np.min(keypoint_np[:, 0])
y_max = np.max(keypoint_np[:, 1])
y_min = np.min(keypoint_np[:, 1])
if expand and img_mat is not None:
x_expand = (x_max - x_min) * 0.1
y_expand = (y_max - y_min) * 0.1
x_min = max(0, x_min - x_expand)
x_max = min(img_mat.shape[1], x_max + x_expand)
y_min = max(0, y_min - y_expand)
y_max = min(img_mat.shape[0], y_max + y_expand)
return np.asarray([x_min, x_max, y_min, y_max])
def _prepare_limb_palette(limbs,
palette,
pop_parts,
data_source,
mask,
search_limbs_func=search_limbs):
"""Prepare limbs and their palette for plotting.
Args:
limbs (Union[np.ndarray, List[int]]):
The preset limbs. This option is for free skeletons like BVH file.
In most cases, it's set to None,
this function will search a result for limbs automatically.
palette (Iterable):
The preset palette for limbs. Specified palette,
three int represents (B, G, R). Should be tuple or list.
In most cases, it's set to None,
a palette will be generated with the result of search_limbs.
pop_parts (Iterable[str]):
The body part names you do not
want to visualize.
When it's none, nothing will be removed.
data_source (str):
Data source type.
mask (Union[list, np.ndarray):
A mask to mask out the incorrect points.
Returns:
Tuple[dict, dict]: (limbs_target, limbs_palette).
"""
if limbs is not None:
limbs_target, limbs_palette = {
'body': limbs.tolist() if isinstance(limbs, np.ndarray) else limbs
}, get_different_colors(len(limbs))
else:
limbs_target, limbs_palette = search_limbs_func(
data_source=data_source, mask=mask)
if palette:
limbs_palette = np.array(palette, dtype=np.uint8)[None]
# check and pop the pop_parts
assert set(pop_parts).issubset(
HUMAN_DATA_PALETTE
), f'wrong part_names in pop_parts, supported parts are\
{set(HUMAN_DATA_PALETTE.keys())}'
for part_name in pop_parts:
if part_name in limbs_target:
limbs_target.pop(part_name)
limbs_palette.pop(part_name)
return limbs_target, limbs_palette
def _prepare_output_path(output_path, overwrite):
"""Prepare output path."""
prepare_output_path(output_path,
allowed_suffix=['.mp4', ''],
tag='output video',
path_type='auto',
overwrite=overwrite)
# output_path is a directory
if check_path_suffix(output_path, ['']):
temp_folder = output_path
os.makedirs(temp_folder, exist_ok=True)
else:
temp_folder = output_path + '_temp_images'
if check_path_existence(temp_folder, 'dir') in [
Existence.DirectoryExistNotEmpty, Existence.DirectoryExistEmpty
]:
shutil.rmtree(temp_folder)
os.makedirs(temp_folder, exist_ok=True)
return temp_folder
def _check_frame_path(frame_list):
"""Check frame path."""
for frame_path in frame_list:
if check_path_existence(frame_path, 'file') != Existence.FileExist or \
not check_path_suffix(frame_path, ['.png', '.jpg', '.jpeg']):
raise FileNotFoundError(
f'The frame should be .png or .jp(e)g: {frame_path}')
def _check_temp_path(temp_folder, frame_list, overwrite):
"""Check temp frame folder path."""
if not overwrite and frame_list is not None and len(frame_list) > 0:
if Path(temp_folder).absolute() == \
Path(frame_list[0]).parent.absolute():
raise FileExistsError(
f'{temp_folder} exists (set --overwrite to overwrite).')
class _CavasProducer:
"""Prepare background canvas, pure white if not set."""
def __init__(self,
frame_list,
resolution,
kp2d=None,
image_array=None,
default_scale=1.5):
"""Initialize a canvas writer."""
# check the origin background frames
if frame_list is not None:
_check_frame_path(frame_list)
self.frame_list = frame_list
else:
self.frame_list = []
self.resolution = resolution
self.kp2d = kp2d
# with numpy array frames
self.image_array = image_array
if self.resolution is None:
if self.image_array is not None:
self.auto_resolution = self.image_array.shape[1:3]
elif len(self.frame_list) > 1 and \
check_path_existence(
self.frame_list[0], 'file') == Existence.FileExist:
tmp_image_array = cv2.imread(self.frame_list[0])
self.auto_resolution = tmp_image_array.shape[:2]
else:
self.auto_resolution = [
int(np.max(kp2d) * default_scale),
int(np.max(kp2d) * default_scale)
]
self.len = kp2d.shape[0]
if self.image_array is None:
self.len_frame = len(self.frame_list)
else:
self.len_frame = self.image_array.shape[0]
def __getitem__(self, frame_index):
"""Get frame data from frame_list of image_array."""
# frame file exists, resolution not set
if frame_index < self.len_frame and self.resolution is None:
if self.image_array is not None:
canvas = self.image_array[frame_index]
else:
canvas = cv2.imread(self.frame_list[frame_index])
if self.kp2d is None:
kp2d_frame = None
else:
kp2d_frame = self.kp2d[frame_index]
# no frame file, resolution has been set
elif frame_index >= self.len_frame and self.resolution is not None:
canvas = np.ones((self.resolution[0], self.resolution[1], 3),
dtype=np.uint8) * 255
if self.kp2d is None:
kp2d_frame = None
else:
kp2d_frame = self.kp2d[frame_index]
# frame file exists, resolution has been set
elif frame_index < self.len_frame and self.resolution is not None:
if self.image_array is not None:
canvas = self.image_array[frame_index]
else:
canvas = cv2.imread(self.frame_list[frame_index])
w_scale = self.resolution[1] / canvas.shape[1]
h_scale = self.resolution[0] / canvas.shape[0]
canvas = cv2.resize(canvas,
(self.resolution[1], self.resolution[0]),
cv2.INTER_CUBIC)
if self.kp2d is None:
kp2d_frame = None
else:
kp2d_frame = np.array([[w_scale, h_scale]
]) * self.kp2d[frame_index]
# no frame file, no resolution
else:
canvas = np.ones(
(self.auto_resolution[0], self.auto_resolution[1], 3),
dtype=np.uint8) * 255
if self.kp2d is None:
kp2d_frame = None
else:
kp2d_frame = self.kp2d[frame_index]
return canvas, kp2d_frame
def __len__(self):
return self.len
def update_frame_list(frame_list, origin_frames, img_format, start, end):
"""Update frame list if have origin_frames."""
input_temp_folder = None
# choose in frame_list or origin_frames
if frame_list is None and origin_frames is None:
print('No background provided, will use pure white background.')
elif frame_list is not None and origin_frames is not None:
warnings.warn('Redundant input, will only use frame_list.')
origin_frames = None
if origin_frames is not None:
check_input_path(input_path=origin_frames,
allowed_suffix=['.mp4', '.gif', ''],
tag='origin frames',
path_type='auto')
if Path(origin_frames).is_file():
input_temp_folder = origin_frames + '_temp_images/'
video_to_images(origin_frames,
input_temp_folder,
start=start,
end=end)
frame_list = glob.glob(osp.join(input_temp_folder, '*.png'))
frame_list.sort()
else:
if img_format is None:
frame_list = []
for im_name in os.listdir(origin_frames):
if Path(im_name).suffix.lower() in [
'.png', '.jpg', '.jpeg'
]:
frame_list.append(osp.join(origin_frames, im_name))
else:
frame_list = []
for index in range(start, end):
frame_path = osp.join(origin_frames, img_format % index)
if osp.exists(frame_path):
frame_list.append(frame_path)
frame_list.sort()
return frame_list, input_temp_folder
def visualize_kp2d(
kp2d: np.ndarray,
output_path: Optional[str] = None,
frame_list: Optional[List[str]] = None,
origin_frames: Optional[str] = None,
image_array: Optional[np.ndarray] = None,
limbs: Optional[Union[np.ndarray, List[int]]] = None,
palette: Optional[Iterable[int]] = None,
data_source: str = 'coco',
mask: Optional[Union[list, np.ndarray]] = None,
img_format: str = '%06d.png',
start: int = 0,
end: int = -1,
overwrite: bool = False,
with_file_name: bool = True,
resolution: Optional[Union[Tuple[int, int], list]] = None,
fps: Union[float, int] = 30,
draw_bbox: bool = False,
with_number: bool = False,
pop_parts: Iterable[str] = None,
disable_tqdm: bool = False,
disable_limbs: bool = False,
return_array: Optional[bool] = False,
keypoints_factory: dict = KEYPOINTS_FACTORY,
remove_raw_file: bool = True,
) -> Union[None, np.ndarray]:
"""Visualize 2d keypoints to a video or into a folder of frames.
Args:
kp2d (np.ndarray): should be array of shape (f * J * 2)
or (f * n * J * 2)]
output_path (str): output video path or image folder.
frame_list (Optional[List[str]], optional): list of origin background
frame paths, element in list each should be a image path like
`*.jpg` or `*.png`. Higher priority than `origin_frames`.
Use this when your file names is hard to sort or you only want to
render a small number frames.
Defaults to None.
origin_frames (Optional[str], optional): origin background frame path,
could be `.mp4`, `.gif`(will be sliced into a folder) or an image
folder. Lower priority than `frame_list`.
Defaults to None.
limbs (Optional[Union[np.ndarray, List[int]]], optional):
if not specified, the limbs will be searched by search_limbs,
this option is for free skeletons like BVH file.
Defaults to None.
palette (Iterable, optional): specified palette, three int represents
(B, G, R). Should be tuple or list.
Defaults to None.
data_source (str, optional): data source type. Defaults to 'coco'.
mask (Optional[Union[list, np.ndarray]], optional):
mask to mask out the incorrect point.
Pass a `np.ndarray` of shape (J,) or `list` of length J.
Defaults to None.
img_format (str, optional): input image format. Default to '%06d.png',
start (int, optional): start frame index. Defaults to 0.
end (int, optional): end frame index. Defaults to -1.
overwrite (bool, optional): whether replace the origin frames.
Defaults to False.
with_file_name (bool, optional): whether write origin frame name on
the images. Defaults to True.
resolution (Optional[Union[Tuple[int, int], list]], optional):
(height, width) of the output video
will be the same size as the original images if not specified.
Defaults to None.
fps (Union[float, int], optional): fps. Defaults to 30.
draw_bbox (bool, optional): whether need to draw bounding boxes.
Defaults to False.
with_number (bool, optional): whether draw index number.
Defaults to False.
pop_parts (Iterable[str], optional): The body part names you do not
want to visualize. Supported parts are ['left_eye','right_eye'
,'nose', 'mouth', 'face', 'left_hand', 'right_hand'].
Defaults to [].frame_list
disable_tqdm (bool, optional):
Whether to disable the entire progressbar wrapper.
Defaults to False.
disable_limbs (bool, optional): whether need to disable drawing limbs.
Defaults to False.
return_array (bool, optional): Whether to return images as a opencv
array. Defaults to None.
keypoints_factory (dict, optional): Dict of all the conventions.
Defaults to KEYPOINTS_FACTORY.
Raises:
FileNotFoundError: check output video path.
FileNotFoundError: check input frame paths.
Returns:
Union[None, np.ndarray].
"""
# check the input array shape, reshape to (num_frames, num_person, J, 2)
kp2d = kp2d[..., :2].copy()
if kp2d.ndim == 3:
kp2d = kp2d[:, np.newaxis]
assert kp2d.ndim == 4
num_frames, num_person = kp2d.shape[0], kp2d.shape[1]
# slice the input array temporally
end = (min(num_frames - 1, end) + num_frames) % num_frames
kp2d = kp2d[start:end + 1]
if image_array is not None:
origin_frames = None
frame_list = None
return_array = True
input_temp_folder = None
else:
frame_list, input_temp_folder = update_frame_list(
frame_list, origin_frames, img_format, start, end)
kp2d = kp2d[:num_frames]
# check output path
if output_path is not None:
output_temp_folder = _prepare_output_path(output_path, overwrite)
# check whether temp_folder will overwrite frame_list by accident
_check_temp_path(output_temp_folder, frame_list, overwrite)
else:
output_temp_folder = None
# check data_source & mask
if data_source not in keypoints_factory:
raise ValueError('Wrong data_source. Should choose in'
f'{list(keypoints_factory.keys())}')
if mask is not None:
if isinstance(mask, list):
mask = np.array(mask).reshape(-1)
assert mask.shape == (
len(keypoints_factory[data_source]),
), f'mask length should fit with keypoints number \
{len(keypoints_factory[data_source])}'
# search the limb connections and palettes from superset smplx
# check and pop the pop_parts
if pop_parts is None:
pop_parts = []
if disable_limbs:
limbs_target, limbs_palette = None, None
else:
# *** changed by wyj ***
limbs_target, limbs_palette = _prepare_limb_palette(
limbs, palette, pop_parts, data_source, mask)
# limbs_target, limbs_palette = limbs, palette
canvas_producer = _CavasProducer(frame_list, resolution, kp2d, image_array)
out_image_array = []
# start plotting by frame
for frame_index in tqdm(range(kp2d.shape[0]), disable=disable_tqdm):
canvas, kp2d_frame = canvas_producer[frame_index]
# start plotting by person
for person_index in range(num_person):
if num_person >= 2 and not disable_limbs:
limbs_palette = get_different_colors(
num_person)[person_index].reshape(1, 3)
canvas = _plot_kp2d_frame(kp2d_person=kp2d_frame[person_index],
canvas=canvas,
limbs=limbs_target,
palette=limbs_palette,
draw_bbox=draw_bbox,
with_number=with_number,
font_size=0.5,
disable_limbs=disable_limbs)
if with_file_name and frame_list is not None:
h, w, _ = canvas.shape
if frame_index <= len(frame_list) - 1:
cv2.putText(
canvas, str(Path(frame_list[frame_index]).name),
(w // 2, h // 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5 * h / 500,
np.array([255, 255, 255]).astype(np.int32).tolist(), 2)
if output_path is not None:
# write the frame with opencv
if frame_list is not None and check_path_suffix(
output_path,
'') and len(frame_list) >= len(canvas_producer):
frame_path = os.path.join(output_temp_folder,
Path(frame_list[frame_index]).name)
img_format = None
else:
frame_path = \
os.path.join(output_temp_folder, f'{frame_index:06d}.png')
img_format = '%06d.png'
cv2.imwrite(frame_path, canvas)
if return_array:
out_image_array.append(canvas[None])
if input_temp_folder is not None:
shutil.rmtree(input_temp_folder)
# convert frames to video
if output_path is not None:
if check_path_suffix(output_path, ['.mp4']):
images_to_video(input_folder=output_temp_folder,
output_path=output_path,
remove_raw_file=remove_raw_file,
img_format=img_format,
fps=fps)
if return_array:
out_image_array = np.concatenate(out_image_array)
return out_image_array
|