Spaces:
Starting
on
L40S
Starting
on
L40S
File size: 11,683 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import trimesh
from trimesh.proximity import closest_point
from .mesh_eval import compute_similarity_transform
def keypoint_mpjpe(pred, gt, mask, alignment='none'):
"""Calculate the mean per-joint position error (MPJPE) and the error after
rigid alignment with the ground truth (PA-MPJPE).
batch_size: N
num_keypoints: K
keypoint_dims: C
Args:
pred (np.ndarray[N, K, C]): Predicted keypoint location.
gt (np.ndarray[N, K, C]): Groundtruth keypoint location.
mask (np.ndarray[N, K]): Visibility of the target. False for invisible
joints, and True for visible. Invisible joints will be ignored for
accuracy calculation.
alignment (str, optional): method to align the prediction with the
groundtruth. Supported options are:
- ``'none'``: no alignment will be applied
- ``'scale'``: align in the least-square sense in scale
- ``'procrustes'``: align in the least-square sense in scale,
rotation and translation.
Returns:
tuple: A tuple containing joint position errors
- mpjpe (float|np.ndarray[N]): mean per-joint position error.
- pa-mpjpe (float|np.ndarray[N]): mpjpe after rigid alignment with the
ground truth
"""
assert mask.any()
if alignment == 'none':
pass
elif alignment == 'procrustes':
pred = np.stack([
compute_similarity_transform(pred_i, gt_i)
for pred_i, gt_i in zip(pred, gt)
])
elif alignment == 'scale':
pred_dot_pred = np.einsum('nkc,nkc->n', pred, pred)
pred_dot_gt = np.einsum('nkc,nkc->n', pred, gt)
scale_factor = pred_dot_gt / pred_dot_pred
pred = pred * scale_factor[:, None, None]
else:
raise ValueError(f'Invalid value for alignment: {alignment}')
error = np.linalg.norm(pred - gt, ord=2, axis=-1)[mask].mean()
return error
def keypoint_accel_error(gt, pred, mask=None):
"""Computes acceleration error:
Note that for each frame that is not visible, three entries in the
acceleration error should be zero'd out.
Args:
gt (Nx14x3).
pred (Nx14x3).
mask (N).
Returns:
error_accel (N-2).
"""
# (N-2)x14x3
accel_gt = gt[:-2] - 2 * gt[1:-1] + gt[2:]
accel_pred = pred[:-2] - 2 * pred[1:-1] + pred[2:]
normed = np.linalg.norm(accel_pred - accel_gt, axis=2)
if mask is None:
new_vis = np.ones(len(normed), dtype=bool)
else:
invis = np.logical_not(mask)
invis1 = np.roll(invis, -1)
invis2 = np.roll(invis, -2)
new_invis = np.logical_or(invis, np.logical_or(invis1, invis2))[:-2]
new_vis = np.logical_not(new_invis)
return np.mean(normed[new_vis], axis=1)
def vertice_pve(pred_verts, target_verts, alignment='none'):
"""Computes per vertex error (PVE).
Args:
verts_gt (N x verts_num x 3).
verts_pred (N x verts_num x 3).
alignment (str, optional): method to align the prediction with the
groundtruth. Supported options are:
- ``'none'``: no alignment will be applied
- ``'scale'``: align in the least-square sense in scale
- ``'procrustes'``: align in the least-square sense in scale,
rotation and translation.
Returns:
error_verts.
"""
assert len(pred_verts) == len(target_verts)
if alignment == 'none':
pass
elif alignment == 'procrustes':
pred_verts = np.stack([
compute_similarity_transform(pred_i, gt_i)
for pred_i, gt_i in zip(pred_verts, target_verts)
])
elif alignment == 'scale':
pred_dot_pred = np.einsum('nkc,nkc->n', pred_verts, pred_verts)
pred_dot_gt = np.einsum('nkc,nkc->n', pred_verts, target_verts)
scale_factor = pred_dot_gt / pred_dot_pred
pred_verts = pred_verts * scale_factor[:, None, None]
else:
raise ValueError(f'Invalid value for alignment: {alignment}')
error = np.linalg.norm(pred_verts - target_verts, ord=2, axis=-1).mean()
return error
def keypoint_3d_pck(pred, gt, mask, alignment='none', threshold=150.):
"""Calculate the Percentage of Correct Keypoints (3DPCK) w. or w/o rigid
alignment.
Paper ref: `Monocular 3D Human Pose Estimation In The Wild Using Improved
CNN Supervision' 3DV'2017. <https://arxiv.org/pdf/1611.09813>`__ .
Note:
- batch_size: N
- num_keypoints: K
- keypoint_dims: C
Args:
pred (np.ndarray[N, K, C]): Predicted keypoint location.
gt (np.ndarray[N, K, C]): Groundtruth keypoint location.
mask (np.ndarray[N, K]): Visibility of the target. False for invisible
joints, and True for visible. Invisible joints will be ignored for
accuracy calculation.
alignment (str, optional): method to align the prediction with the
groundtruth. Supported options are:
- ``'none'``: no alignment will be applied
- ``'scale'``: align in the least-square sense in scale
- ``'procrustes'``: align in the least-square sense in scale,
rotation and translation.
threshold: If L2 distance between the prediction and the groundtruth
is less then threshold, the predicted result is considered as
correct. Default: 150 (mm).
Returns:
pck: percentage of correct keypoints.
"""
assert mask.any()
if alignment == 'none':
pass
elif alignment == 'procrustes':
pred = np.stack([
compute_similarity_transform(pred_i, gt_i)
for pred_i, gt_i in zip(pred, gt)
])
elif alignment == 'scale':
pred_dot_pred = np.einsum('nkc,nkc->n', pred, pred)
pred_dot_gt = np.einsum('nkc,nkc->n', pred, gt)
scale_factor = pred_dot_gt / pred_dot_pred
pred = pred * scale_factor[:, None, None]
else:
raise ValueError(f'Invalid value for alignment: {alignment}')
error = np.linalg.norm(pred - gt, ord=2, axis=-1)
pck = (error < threshold).astype(np.float32)[mask].mean() * 100
return pck
def keypoint_3d_auc(pred, gt, mask, alignment='none'):
"""Calculate the Area Under the Curve (3DAUC) computed for a range of 3DPCK
thresholds.
Paper ref: `Monocular 3D Human Pose Estimation In The Wild Using Improved
CNN Supervision' 3DV'2017. <https://arxiv.org/pdf/1611.09813>`__ .
This implementation is derived from mpii_compute_3d_pck.m, which is
provided as part of the MPI-INF-3DHP test data release.
Note:
batch_size: N
num_keypoints: K
keypoint_dims: C
Args:
pred (np.ndarray[N, K, C]): Predicted keypoint location.
gt (np.ndarray[N, K, C]): Groundtruth keypoint location.
mask (np.ndarray[N, K]): Visibility of the target. False for invisible
joints, and True for visible. Invisible joints will be ignored for
accuracy calculation.
alignment (str, optional): method to align the prediction with the
groundtruth. Supported options are:
- ``'none'``: no alignment will be applied
- ``'scale'``: align in the least-square sense in scale
- ``'procrustes'``: align in the least-square sense in scale,
rotation and translation.
Returns:
auc: AUC computed for a range of 3DPCK thresholds.
"""
assert mask.any()
if alignment == 'none':
pass
elif alignment == 'procrustes':
pred = np.stack([
compute_similarity_transform(pred_i, gt_i)
for pred_i, gt_i in zip(pred, gt)
])
elif alignment == 'scale':
pred_dot_pred = np.einsum('nkc,nkc->n', pred, pred)
pred_dot_gt = np.einsum('nkc,nkc->n', pred, gt)
scale_factor = pred_dot_gt / pred_dot_pred
pred = pred * scale_factor[:, None, None]
else:
raise ValueError(f'Invalid value for alignment: {alignment}')
error = np.linalg.norm(pred - gt, ord=2, axis=-1)
thresholds = np.linspace(0., 150, 31)
pck_values = np.zeros(len(thresholds))
for i in range(len(thresholds)):
pck_values[i] = (error < thresholds[i]).astype(np.float32)[mask].mean()
auc = pck_values.mean() * 100
return auc
def fg_vertices_to_mesh_distance(groundtruth_vertices,
grundtruth_landmark_points,
predicted_mesh_vertices, predicted_mesh_faces,
predicted_mesh_landmark_points):
"""This script computes the reconstruction error between an input mesh and
a ground truth mesh.
Args:
groundtruth_vertices (np.ndarray[N,3]): Ground truth vertices.
grundtruth_landmark_points (np.ndarray[7,3]): Ground truth annotations.
predicted_mesh_vertices (np.ndarray[M,3]): Predicted vertices.
predicted_mesh_faces (np.ndarray[K,3]): Vertex indices
composing the predicted mesh.
predicted_mesh_landmark_points (np.ndarray[7,3]): Predicted points.
Return:
distance: Mean point to mesh distance.
The grundtruth_landmark_points and predicted_mesh_landmark_points have to
contain points in the following order:
(1) right eye outer corner, (2) right eye inner corner,
(3) left eye inner corner, (4) left eye outer corner,
(5) nose bottom, (6) right mouth corner, (7) left mouth corner.
"""
# Do procrustes based on the 7 points:
_, tform = compute_similarity_transform(predicted_mesh_landmark_points,
grundtruth_landmark_points,
return_tform=True)
# Use tform to transform all vertices.
predicted_mesh_vertices_aligned = (
tform['scale'] * tform['rotation'].dot(predicted_mesh_vertices.T) +
tform['translation']).T
# Compute the mask: A circular area around the center of the face.
nose_bottom = np.array(grundtruth_landmark_points[4])
nose_bridge = (np.array(grundtruth_landmark_points[1]) + np.array(
grundtruth_landmark_points[2])) / 2 # between the inner eye corners
face_centre = nose_bottom + 0.3 * (nose_bridge - nose_bottom)
# Compute the radius for the face mask:
outer_eye_dist = np.linalg.norm(
np.array(grundtruth_landmark_points[0]) -
np.array(grundtruth_landmark_points[3]))
nose_dist = np.linalg.norm(nose_bridge - nose_bottom)
mask_radius = 1.2 * (outer_eye_dist + nose_dist) / 2
# Find all the vertex indices in mask area.
vertex_indices_mask = []
# vertex indices in the source mesh (the ground truth scan)
points_on_groundtruth_scan_to_measure_from = []
for vertex_idx, vertex in enumerate(groundtruth_vertices):
dist = np.linalg.norm(
vertex - face_centre
) # We use Euclidean distance for the mask area for now.
if dist <= mask_radius:
vertex_indices_mask.append(vertex_idx)
points_on_groundtruth_scan_to_measure_from.append(vertex)
assert len(vertex_indices_mask) == len(
points_on_groundtruth_scan_to_measure_from)
# Calculate the distance to the surface of the predicted mesh.
predicted_mesh = trimesh.Trimesh(predicted_mesh_vertices_aligned,
predicted_mesh_faces)
_, distance, _ = closest_point(predicted_mesh,
points_on_groundtruth_scan_to_measure_from)
return distance.mean()
|