Spaces:
Running
on
L40S
Running
on
L40S
File size: 56,165 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 |
import math
from typing import Iterable, List, Optional, Tuple, Union
import numpy as np
import torch
from pytorch3d.renderer import cameras
from pytorch3d.structures import Meshes
from pytorch3d.transforms import Transform3d
from detrsmpl.core.conventions.cameras.convert_convention import (
convert_camera_matrix,
convert_ndc_to_screen,
convert_screen_to_ndc,
convert_world_view,
)
from detrsmpl.utils.transforms import ee_to_rotmat
from .builder import CAMERAS
class MMCamerasBase(cameras.CamerasBase):
"""Inherited from Pytorch3D CamerasBase and provide some new functions."""
def __init__(self, **kwargs) -> None:
"""Initialize your cameras with `build_cameras` following:
1): provide `K`, `R`, `T`, `resolution`/`image_size`, `in_ndc`
directly.
`K` should be shape of (N, 3, 3) or (N, 4, 4).
`R` should be shape of (N, 3, 3).
`T` should be shape of (N, 3).
2): if `K` is not provided, will use `get_default_projection_matrix`
to generate K from camera intrinsic parameters.
E.g., you can pass `focal_length`, `principal_point` for
perspective camers.
If these args are not provided, will use default values.
3): if `R` is not provided, will use Identity matrix as default.
4): if `T` is not provided, will use zeros matrix as default.
5): `convention` means your source parameter camera convention.
This mainly depends on how you get the matrixs. E.g., you get the
`K` `R`, `T` by calibration with opencv, you should set
`convention = opencv`. To figure out your camera convention,
please see the definition of its extrinsic and intrinsic matrixs.
For projection and rendering, the matrixs will be converted to
`pytorch3d` finally since the `transforms3d` called in rendering
and projection are defined as `pytorch3d` convention.
6): `image_size` equals `resolution`.
7): `in_ndc` could be set for 'PerspectiveCameras' and
'OrthographicCameras', other cameras are fixed for this arg.
`in_ndc = True` means your projection matrix is defined as `camera
space to NDC space`. Under this cirecumstance you need to set
`image_size` or `resolution` (they are equal) when you need to do
`transform_points_screen`. You can also override resolution
in `transform_points_screen` function.
`in_ndc = False` means your projections matrix is defined as
`cameras space to screen space`. Under this cirecumstance you do
not need to set `image_size` or `resolution` (they are equal) when
you need to do `transform_points_screen` since the projection
matrix is defined as view space to screen space.
"""
for k in kwargs:
if isinstance(kwargs.get(k), np.ndarray):
kwargs.update({k: torch.Tensor(kwargs[k])})
convention = kwargs.pop('convention', 'pytorch3d').lower()
in_ndc = kwargs.pop('in_ndc', kwargs.get('_in_ndc'))
kwargs.update(_in_ndc=in_ndc)
is_perspective = kwargs.get('_is_perspective')
kwargs.pop('is_perspective', None)
image_size = kwargs.get('image_size', kwargs.get('resolution', None))
if image_size is not None:
if isinstance(image_size, (int, float)):
image_size = (image_size, image_size)
if isinstance(image_size, (tuple, list)):
image_size = torch.Tensor(image_size)
if isinstance(image_size, torch.Tensor):
if image_size.numel() == 1:
image_size = image_size.repeat(2)
image_size = image_size.view(-1, 2)
if kwargs.get('K') is None:
focal_length = kwargs.get('focal_length', None)
if focal_length is not None:
if not isinstance(focal_length, Iterable):
focal_length = [focal_length, focal_length]
if not torch.is_tensor(focal_length):
focal_length = torch.FloatTensor(focal_length).view(-1, 2)
elif focal_length.numel() == 1:
focal_length = focal_length.repeat(2).view(-1, 2)
kwargs.update(focal_length=focal_length)
principal_point = kwargs.get('principal_point', None)
if principal_point is not None:
if isinstance(principal_point, (tuple, list)):
principal_point = torch.FloatTensor(principal_point)
principal_point = principal_point.view(-1, 2)
kwargs.update(principal_point=principal_point)
K = self.get_default_projection_matrix(**kwargs)
K, _, _ = convert_camera_matrix(K=K,
is_perspective=is_perspective,
convention_src='pytorch3d',
convention_dst='pytorch3d',
in_ndc_src=in_ndc,
in_ndc_dst=in_ndc,
resolution_dst=image_size,
resolution_src=image_size)
kwargs.update(K=K)
K, R, T = convert_camera_matrix(K=kwargs.get('K'),
R=kwargs.get('R', None),
T=kwargs.get('T', None),
convention_src=convention,
convention_dst='pytorch3d',
is_perspective=is_perspective,
in_ndc_src=in_ndc,
in_ndc_dst=in_ndc,
resolution_src=image_size,
resolution_dst=image_size)
if image_size is not None:
if image_size.shape[0] == 1:
image_size = image_size.repeat(K.shape[0], 1)
kwargs.update(image_size=image_size)
kwargs.update(resolution=image_size)
kwargs.update(K=K, R=R, T=T)
super().__init__(**kwargs)
def get_camera_plane_normals(self, **kwargs) -> torch.Tensor:
"""Get the identity normal vector which stretchs out of the camera
plane.
Could pass `R` to override the camera extrinsic rotation matrix.
Returns:
torch.Tensor: shape will be (N, 3)
"""
normals = torch.Tensor([0, 0, 1]).view(1, 3).to(self.device)
w2v_trans = self.get_world_to_view_transform(**kwargs)
normals = w2v_trans.inverse().transform_normals(normals)
return normals.view(-1, 3)
def compute_depth_of_points(self, points: torch.Tensor) -> torch.Tensor:
"""Compute depth of points to the camera plane.
Args:
points ([torch.Tensor]): shape should be (batch_size, ..., 3).
Returns:
torch.Tensor: shape will be (batch_size, 1)
"""
world_to_view_transform = self.get_world_to_view_transform()
world_to_view_points = world_to_view_transform.transform_points(
points.to(self.device))
return world_to_view_points[..., 2:3]
def compute_normal_of_meshes(self, meshes: Meshes) -> torch.Tensor:
"""Compute normal of meshes in the camera view.
Args:
points ([torch.Tensor]): shape should be (batch_size, 3).
Returns:
torch.Tensor: shape will be (batch_size, 1)
"""
world_to_view_transform = self.get_world_to_view_transform()
world_to_view_normals = world_to_view_transform.transform_normals(
meshes.verts_normals_padded().to(self.device))
return world_to_view_normals
def __repr__(self):
"""Rewrite __repr__
Returns:
str: print the information of cameras (N, in_ndc, device).
"""
main_str = super().__repr__()
main_str = main_str.split(')')[0]
main_str += f'N: {self.__len__()}, in_ndc: {self.in_ndc()}, '
main_str += f'device: {self.device})'
return main_str
def get_image_size(self):
"""Returns the image size, if provided, expected in the form of
(height, width) The image size is used for conversion of projected
points to screen coordinates."""
if hasattr(self, 'image_size'):
image_size = self.image_size
if hasattr(self, 'resolution'):
if self.resolution is not None:
image_size = self.resolution
else:
image_size = None
return image_size
def __getitem__(
self, index: Union[slice, int, torch.Tensor, List,
Tuple]) -> 'MMCamerasBase':
"""Slice the cameras by batch dim.
Args:
index (Union[slice, int, torch.Tensor, List, Tuple]):
index for slicing.
Returns:
MMCamerasBase: sliced cameras.
"""
if isinstance(index, int):
index = [index]
return self.__class__(K=self.K[index],
R=self.R[index],
T=self.T[index],
image_size=self.get_image_size()[index]
if self.get_image_size() is not None else None,
in_ndc=self.in_ndc(),
convention='pytorch3d',
device=self.device)
def extend(self, N) -> 'MMCamerasBase':
"""Create new camera class which contains each input camera N times.
Args:
N: number of new copies of each camera.
Returns:
MMCamerasBase object.
"""
return self.__class__(K=self.K.repeat(N, 1, 1),
R=self.R.repeat(N, 1, 1),
T=self.T.repeat(N, 1),
image_size=self.get_image_size(),
in_ndc=self.in_ndc(),
convention='pytorch3d',
device=self.device)
def extend_(self, N):
"""extend camera inplace."""
self.K = self.K.repeat(N, 1, 1)
self.R = self.R.repeat(N, 1, 1)
self.T = self.T.repeat(N, 1)
self._N = self._N * N
@classmethod
def get_default_projection_matrix(cls, ):
"""Class method. Calculate the projective transformation matrix by
default parameters.
Args:
**kwargs: parameters for the projection can be passed in as keyword
arguments to override the default values set in `__init__`.
Return:
a `torch.Tensor` which represents a batch of projection matrices K
of shape (N, 4, 4)
"""
raise NotImplementedError()
def to_screen_(self, **kwargs) -> 'MMCamerasBase':
"""Convert to screen inplace."""
if self.in_ndc():
if self.get_image_size() is None:
self.image_size = kwargs.get('image_size')
else:
self.image_size = self.get_image_size()
self.K = convert_ndc_to_screen(K=self.K,
resolution=self.image_size,
is_perspective=self._is_perspective)
self._in_ndc = False
else:
print('Redundant operation, already in screen.')
def to_ndc_(self, **kwargs) -> 'MMCamerasBase':
"""Convert to ndc inplace."""
if self.in_ndc():
print('Redundant operation, already in ndc.')
else:
if self.get_image_size() is None:
self.image_size = kwargs.get('image_size')
else:
self.image_size = self.get_image_size()
self.K = convert_screen_to_ndc(K=self.K,
resolution=self.image_size,
is_perspective=self._is_perspective)
self._in_ndc = True
def to_screen(self, **kwargs) -> 'MMCamerasBase':
"""Convert to screen."""
if self.in_ndc():
if self.get_image_size() is None:
self.image_size = kwargs.get('image_size')
else:
self.image_size = self.get_image_size()
K = convert_ndc_to_screen(K=self.K,
resolution=self.image_size,
is_perspective=self._is_perspective)
return self.__class__(K=K,
R=self.R,
T=self.T,
in_ndc=False,
resolution=self.image_size)
else:
print('Redundant operation, already in screen.')
def to_ndc(self, **kwargs) -> 'MMCamerasBase':
"""Convert to ndc."""
if self.in_ndc():
print('Redundant operation, already in ndc.')
else:
if self.get_image_size() is None:
self.image_size = kwargs.get('image_size')
else:
self.image_size = self.get_image_size()
K = convert_screen_to_ndc(K=self.K,
resolution=self.image_size,
is_perspective=self._is_perspective)
return self.__class__(K=K,
R=self.R,
T=self.T,
in_ndc=True,
resolution=self.image_size)
def detach(self) -> 'MMCamerasBase':
image_size = self.image_size.detach(
) if self.image_size is not None else None
return self.__class__(K=self.K.detach(),
R=self.R.detach(),
T=self.T.detach(),
in_ndc=self.in_ndc(),
device=self.device,
resolution=image_size)
def concat(self, others) -> 'MMCamerasBase':
if isinstance(others, type(self)):
others = [others]
else:
raise TypeError('Could only concat with same type cameras.')
return concat_cameras([self] + others)
@CAMERAS.register_module(name=('WeakPerspectiveCameras', 'WeakPerspective',
'weakperspective'))
class WeakPerspectiveCameras(MMCamerasBase):
"""Inherited from [Pytorch3D cameras](https://github.com/facebookresearch/
pytorch3d/blob/main/pytorch3d/renderer/cameras.py) and mimiced the code
style. And re-inmplemented functions: compute_projection_matrix,
get_projection_transform, unproject_points, is_perspective, in_ndc for
render.
K modified from [VIBE](https://github.com/mkocabas/VIBE/blob/master/
lib/utils/renderer.py) and changed to opencv convention.
Original license please see docs/additional_license/md.
This intrinsic matrix is orthographics indeed, but could serve as
weakperspective for single smpl mesh.
"""
def __init__(
self,
scale_x: Union[torch.Tensor, float] = 1.0,
scale_y: Union[torch.Tensor, float] = 1.0,
transl_x: Union[torch.Tensor, float] = 0.0,
transl_y: Union[torch.Tensor, float] = 0.0,
znear: Union[torch.Tensor, float] = -1.0,
aspect_ratio: Union[torch.Tensor, float] = 1.0,
K: Optional[torch.Tensor] = None,
R: Optional[torch.Tensor] = None,
T: Optional[torch.Tensor] = None,
device: Union[torch.device, str] = 'cpu',
convention: str = 'pytorch3d',
**kwargs,
):
"""Initialize. If K is provided, don't need scale_x, scale_y, transl_x,
transl_y, znear, aspect_ratio.
Args:
scale_x (Union[torch.Tensor, float], optional):
Scale in x direction.
Defaults to 1.0.
scale_y (Union[torch.Tensor, float], optional):
Scale in y direction.
Defaults to 1.0.
transl_x (Union[torch.Tensor, float], optional):
Translation in x direction.
Defaults to 0.0.
transl_y (Union[torch.Tensor, float], optional):
Translation in y direction.
Defaults to 0.0.
znear (Union[torch.Tensor, float], optional):
near clipping plane of the view frustrum.
Defaults to -1.0.
aspect_ratio (Union[torch.Tensor, float], optional):
aspect ratio of the image pixels. 1.0 indicates square pixels.
Defaults to 1.0.
K (Optional[torch.Tensor], optional): Intrinsic matrix of shape
(N, 4, 4). If provided, don't need scale_x, scale_y, transl_x,
transl_y, znear, aspect_ratio.
Defaults to None.
R (Optional[torch.Tensor], optional):
Rotation matrix of shape (N, 3, 3).
Defaults to None.
T (Optional[torch.Tensor], optional):
Translation matrix of shape (N, 3).
Defaults to None.
device (Union[torch.device, str], optional):
torch device. Defaults to 'cpu'.
"""
kwargs.update(
_in_ndc=True,
_is_perspective=False,
)
kwargs.pop('in_ndc', None)
kwargs.pop('is_perspective', None)
super().__init__(scale_x=scale_x,
scale_y=scale_y,
transl_x=transl_x,
transl_y=transl_y,
znear=znear,
aspect_ratio=aspect_ratio,
K=K,
R=R,
T=T,
device=device,
convention=convention,
**kwargs)
@staticmethod
def convert_orig_cam_to_matrix(
orig_cam: torch.Tensor,
**kwargs) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute intrinsic camera matrix from orig_cam parameter of smpl.
.. code-block:: python
r > 1::
K = [[sx*r, 0, 0, tx*sx*r],
[0, sy, 0, ty*sy],
[0, 0, 1, 0],
[0, 0, 0, 1]]
or r < 1::
K = [[sx, 0, 0, tx*sx],
[0, sy/r, 0, ty*sy/r],
[0, 0, 1, 0],
[0, 0, 0, 1],]
rotation matrix: (N, 3, 3)::
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]
translation matrix: (N, 3)::
[0, 0, -znear]
Args:
orig_cam (torch.Tensor): shape should be (N, 4).
znear (Union[torch.Tensor, float], optional):
near clipping plane of the view frustrum.
Defaults to 0.0.
aspect_ratio (Union[torch.Tensor, float], optional):
aspect ratio of the image pixels. 1.0 indicates square pixels.
Defaults to 1.0.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
opencv intrinsic matrix: (N, 4, 4)
"""
znear = kwargs.get('znear', -1.0)
aspect_ratio = kwargs.get('aspect_ratio', 1.0)
_N = orig_cam.shape[0]
scale_x, scale_y, transl_x, transl_y = orig_cam[:, 0], orig_cam[:, 1],\
orig_cam[:, 2], orig_cam[:, 3]
K = torch.zeros((_N, 4, 4), dtype=torch.float32)
if aspect_ratio >= 1.0:
K[:, 0, 0] = scale_x * aspect_ratio
K[:, 1, 1] = scale_y
K[:, 0, 3] = transl_x * scale_x * aspect_ratio
K[:, 1, 3] = transl_y * scale_y
else:
K[:, 0, 0] = scale_x
K[:, 1, 1] = scale_y / aspect_ratio
K[:, 0, 3] = transl_x * scale_x
K[:, 1, 3] = transl_y * scale_y / aspect_ratio
K[:, 3, 3] = 1
K[:, 2, 2] = 1
R = torch.eye(3, 3)[None].repeat(_N, 1, 1)
T = torch.zeros(_N, 3)
T[:, 2] = znear
return K, R, T
@staticmethod
def convert_K_to_orig_cam(
K: torch.Tensor,
aspect_ratio: Union[torch.Tensor, float] = 1.0,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute intrinsic camera matrix from pred camera parameter of smpl.
Args:
K (torch.Tensor):
opencv orthographics intrinsic matrix: (N, 4, 4)
.. code-block:: python
K = [[sx*r, 0, 0, tx*sx*r],
[0, sy, 0, ty*sy],
[0, 0, 1, 0],
[0, 0, 0, 1],]
aspect_ratio (Union[torch.Tensor, float], optional):
aspect ratio of the image pixels. 1.0 indicates square pixels.
Defaults to 1.0.
Returns:
orig_cam (torch.Tensor): shape should be (N, 4).
"""
_N = K.shape[0]
s_x = K[:, 0, 0] / aspect_ratio
s_y = K[:, 1, 1] / aspect_ratio
t_x = K[:, 0, 3] / (aspect_ratio * s_x)
t_y = K[:, 1, 3] / s_y
orig_cam = torch.cat([s_x, s_y, t_x, t_y], -1).view(_N, 4)
return orig_cam
@classmethod
def get_default_projection_matrix(cls, **args):
"""Class method. Calculate the projective transformation matrix by
default parameters.
Args:
**kwargs: parameters for the projection can be passed in as keyword
arguments to override the default values set in `__init__`.
Return:
a `torch.Tensor` which represents a batch of projection matrices K
of shape (N, 4, 4)
"""
orig_cam = args.get('orig_cam', None)
scale_x = args.get('scale_x', 1.0)
scale_y = args.get('scale_y', 1.0)
transl_x = args.get('transl_x', 0.0)
transl_y = args.get('transl_y', 0.0)
aspect_ratio = args.get('aspect_ratio', 1.0)
batch_size = args.get('batch_size', 1)
device = args.get('device', 'cpu')
if orig_cam is not None:
K, _, _ = cls.convert_orig_cam_to_matrix(orig_cam, **args)
else:
K = torch.zeros((1, 4, 4), dtype=torch.float32)
K[:, 0, 0] = scale_x * aspect_ratio
K[:, 1, 1] = scale_y
K[:, 3, 3] = 1
K[:, 0, 3] = transl_x * scale_x * aspect_ratio
K[:, 1, 3] = transl_y * scale_y
K[:, 2, 2] = 1
K = K.repeat(batch_size, 1, 1).to(device)
return K
def compute_projection_matrix(self, scale_x, scale_y, transl_x, transl_y,
aspect_ratio) -> torch.Tensor:
"""Compute the calibration matrix K of shape (N, 4, 4)
Args:
scale_x (Union[torch.Tensor, float], optional):
Scale in x direction.
scale_y (Union[torch.Tensor, float], optional):
Scale in y direction.
transl_x (Union[torch.Tensor, float], optional):
Translation in x direction.
transl_y (Union[torch.Tensor, float], optional):
Translation in y direction.
aspect_ratio (Union[torch.Tensor, float], optional):
aspect ratio of the image pixels. 1.0 indicates square pixels.
Returns:
torch.FloatTensor of the calibration matrix with shape (N, 4, 4)
"""
K = torch.zeros((self._N, 4, 4),
dtype=torch.float32,
device=self.device)
K[:, 0, 0] = scale_x * aspect_ratio
K[:, 1, 1] = scale_y
K[:, 3, 3] = 1
K[:, 0, 3] = transl_x * scale_x * aspect_ratio
K[:, 1, 3] = transl_y * scale_y
K[:, 2, 2] = 1
return K
def get_projection_transform(self, **kwargs) -> Transform3d:
"""Calculate the orthographic projection matrix. Use column major
order.
Args:
**kwargs: parameters for the projection can be passed in to
override the default values set in __init__.
Return:
a Transform3d object which represents a batch of projection
matrices of shape (N, 4, 4)
"""
K = kwargs.get('K', self.K)
if K is not None:
if K.shape != (self._N, 4, 4):
msg = f'Expected K to have shape of ({self._N}, 4, 4)'
raise ValueError(msg)
else:
K = self.compute_projection_matrix(
kwargs.get('scale_x', self.scale_x),
kwargs.get('scale_y', self.scale_y),
kwargs.get('transl_x', self.trans_x),
kwargs.get('transl_y', self.trans_y),
kwargs.get('aspect_ratio', self.aspect_ratio))
transform = Transform3d(matrix=K.transpose(1, 2).contiguous(),
device=self.device)
return transform
def unproject_points(self,
xy_depth: torch.Tensor,
world_coordinates: bool = True,
**kwargs) -> torch.Tensor:
"""Sends points from camera coordinates (NDC or screen) back to camera
view or world coordinates depending on the `world_coordinates` boolean
argument of the function."""
if world_coordinates:
to_camera_transform = self.get_full_projection_transform(**kwargs)
else:
to_camera_transform = self.get_projection_transform(**kwargs)
unprojection_transform = to_camera_transform.inverse()
return unprojection_transform.transform_points(xy_depth)
def is_perspective(self):
"""Boolean of whether is perspective."""
return False
def in_ndc(self):
"""Boolean of whether in NDC."""
return True
def to_ndc_(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
def to_screen_(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
def to_ndc(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
def to_screen(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
@CAMERAS.register_module(name=('PerspectiveCameras', 'perspective',
'Perspective'))
class PerspectiveCameras(cameras.PerspectiveCameras, MMCamerasBase):
"""Inherited from Pytorch3D `PerspectiveCameras`."""
def __init__(
self,
focal_length=1.0,
principal_point=((0.0, 0.0), ),
R: Optional[torch.Tensor] = None,
T: Optional[torch.Tensor] = None,
K: Optional[torch.Tensor] = None,
device: Union[torch.device, str] = 'cpu',
in_ndc: bool = True,
convention: str = 'pytorch3d',
image_size: Optional[Union[List, Tuple, torch.Tensor]] = None,
**kwargs,
) -> None:
"""
Args:
focal_length (float, torch.Tensor, optional): Defaults to 1.0.
principal_point (tuple, optional): Defaults to ((0.0, 0.0), ).
R (Optional[torch.Tensor], optional): Defaults to None.
T (Optional[torch.Tensor], optional): Defaults to None.
K (Optional[torch.Tensor], optional): Defaults to None.
device (Union[torch.device, str], optional): Defaults to 'cpu'.
in_ndc (bool, optional): Defaults to True.
convention (str, optional): Defaults to 'pytorch3d'.
image_size (Optional[Union[List, Tuple, torch.Tensor]], optional):
Defaults to None.
"""
if image_size is not None:
kwargs.update({'image_size': image_size})
kwargs.update(
_in_ndc=in_ndc,
_is_perspective=True,
)
kwargs.pop('is_perspective', None)
kwargs.pop('in_ndc', None)
super(cameras.PerspectiveCameras,
self).__init__(device=device,
focal_length=focal_length,
principal_point=principal_point,
R=R,
T=T,
K=K,
convention=convention,
**kwargs)
if image_size is not None:
if (self.image_size < 1).any(): # pyre-ignore
raise ValueError('Image_size provided has invalid values')
else:
self.image_size = None
def __getitem__(self, index: Union[slice, int, torch.Tensor, List, Tuple]):
"""Slice the cameras by batch dim.
Args:
index (Union[slice, int, torch.Tensor, List, Tuple]):
index for slicing.
Returns:
MMCamerasBase: sliced cameras.
"""
return super(cameras.PerspectiveCameras, self).__getitem__(index)
@classmethod
def get_default_projection_matrix(cls, **args) -> torch.Tensor:
"""Class method. Calculate the projective transformation matrix by
default parameters.
Args:
**kwargs: parameters for the projection can be passed in as keyword
arguments to override the default values set in `__init__`.
Return:
a `torch.Tensor` which represents a batch of projection matrices K
of shape (N, 4, 4)
"""
batch_size = args.get('batch_size', 1)
device = args.get('device', 'cpu')
focal_length = args.get('focal_length')
principal_point = args.get('principal_point')
return cameras._get_sfm_calibration_matrix(
N=batch_size,
device=device,
focal_length=focal_length,
principal_point=principal_point,
orthographic=False)
def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
kwargs.pop('cameras', None)
return super().get_ndc_camera_transform(**kwargs)
def transform_points_screen(self,
points,
eps: Optional[float] = None,
**kwargs) -> torch.Tensor:
kwargs.pop('cameras', None)
return super().transform_points_screen(points, eps, **kwargs)
@CAMERAS.register_module(name=('FoVPerspectiveCameras', 'FoVPerspective',
'fovperspective'))
class FoVPerspectiveCameras(cameras.FoVPerspectiveCameras, MMCamerasBase):
"""Inherited from Pytorch3D `FoVPerspectiveCameras`."""
def __init__(
self,
znear=1.0,
zfar=100.0,
aspect_ratio=1.0,
fov=60.0,
degrees: bool = True,
R: Optional[torch.Tensor] = None,
T: Optional[torch.Tensor] = None,
K: Optional[torch.Tensor] = None,
device: Union[torch.device, str] = 'cpu',
convention: str = 'pytorch3d',
**kwargs,
) -> None:
"""Initialize a camera.
Args:
znear (float, optional): Defaults to 1.0.
zfar (float, optional): Defaults to 100.0.
aspect_ratio (float, optional): Defaults to 1.0.
fov (float, optional): Defaults to 60.0.
degrees (bool, optional): Defaults to True.
R (Optional[torch.Tensor], optional): Defaults to None.
T (Optional[torch.Tensor], optional): Defaults to None.
K (Optional[torch.Tensor], optional): Defaults to None.
device (Union[torch.device, str], optional): Defaults to 'cpu'.
convention (str, optional): Defaults to 'pytorch3d'.
"""
kwargs.update(
_in_ndc=True,
_is_perspective=True,
)
kwargs.pop('in_ndc', None)
kwargs.pop('is_perspective', None)
super(cameras.FoVPerspectiveCameras, self).__init__(
device=device,
znear=znear,
zfar=zfar,
aspect_ratio=aspect_ratio,
fov=fov,
R=R,
T=T,
K=K,
convention=convention,
**kwargs,
)
self.degrees = degrees
def __getitem__(self, index: Union[slice, int, torch.Tensor, List, Tuple]):
"""Slice the cameras by batch dim.
Args:
index (Union[slice, int, torch.Tensor, List, Tuple]):
index for slicing.
Returns:
MMCamerasBase: sliced cameras.
"""
return super(cameras.FoVPerspectiveCameras, self).__getitem__(index)
def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
kwargs.pop('cameras', None)
return super().get_ndc_camera_transform(**kwargs)
def transform_points_screen(self,
points,
eps: Optional[float] = None,
**kwargs) -> torch.Tensor:
kwargs.pop('cameras', None)
return super().transform_points_screen(points, eps, **kwargs)
@classmethod
def get_default_projection_matrix(cls, **args) -> torch.Tensor:
"""Class method. Calculate the projective transformation matrix by
default parameters.
Args:
**kwargs: parameters for the projection can be passed in as keyword
arguments to override the default values set in `__init__`.
Return:
a `torch.Tensor` which represents a batch of projection matrices K
of shape (N, 4, 4)
"""
znear = args.get('znear', 1.0)
zfar = args.get('zfar', 100.0)
aspect_ratio = args.get('aspect_ratio', 1.0)
fov = args.get('fov', 60.0)
degrees = args.get('degrees', True)
batch_size = args.get('batch_size', 1)
K = torch.zeros((1, 4, 4), dtype=torch.float32)
if degrees:
fov = (math.pi / 180) * fov
if not torch.is_tensor(fov):
fov = torch.tensor(fov)
tanHalfFov = torch.tan((fov / 2))
max_y = tanHalfFov * znear
min_y = -max_y
max_x = max_y * aspect_ratio
min_x = -max_x
z_sign = 1.0
K[:, 0, 0] = 2.0 * znear / (max_x - min_x)
K[:, 1, 1] = 2.0 * znear / (max_y - min_y)
K[:, 0, 2] = (max_x + min_x) / (max_x - min_x)
K[:, 1, 2] = (max_y + min_y) / (max_y - min_y)
K[:, 3, 2] = z_sign
K[:, 2, 2] = z_sign * zfar / (zfar - znear)
K[:, 2, 3] = -(zfar * znear) / (zfar - znear)
K = K.repeat(batch_size, 1, 1)
return K
def to_ndc_(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
def to_screen_(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
def to_ndc(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
def to_screen(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
@CAMERAS.register_module(name=('OrthographicCameras', 'Orthographic',
'orthographic'))
class OrthographicCameras(cameras.OrthographicCameras, MMCamerasBase):
"""Inherited from Pytorch3D `OrthographicCameras`."""
def __init__(
self,
focal_length=1.0,
principal_point=((0.0, 0.0), ),
R: Optional[torch.Tensor] = None,
T: Optional[torch.Tensor] = None,
K: Optional[torch.Tensor] = None,
device: Union[torch.Tensor, str] = 'cpu',
in_ndc: bool = True,
image_size: Optional[torch.Tensor] = None,
convention: str = 'pytorch3d',
**kwargs,
) -> None:
"""Initialize OrthographicCameras.
Args:
focal_length (float, optional): Defaults to 1.0.
principal_point (tuple, optional): Defaults to ((0.0, 0.0), ).
R (Optional[torch.Tensor], optional): Defaults to None.
T (Optional[torch.Tensor], optional): Defaults to None.
K (Optional[torch.Tensor], optional): Defaults to None.
device (Union[torch.Tensor, str], optional): Defaults to 'cpu'.
in_ndc (bool, optional): Defaults to True.
image_size (Optional[torch.Tensor], optional): Defaults to None.
convention (str, optional): Defaults to 'pytorch3d'.
Raises:
ValueError: [description]
"""
if image_size is not None:
kwargs.update({'image_size': image_size})
kwargs.update(
_is_perspective=False,
_in_ndc=in_ndc,
)
kwargs.pop('is_perspective', None)
kwargs.pop('in_ndc', None)
super(cameras.OrthographicCameras,
self).__init__(device=device,
focal_length=focal_length,
principal_point=principal_point,
R=R,
T=T,
K=K,
convention=convention,
**kwargs)
if image_size is not None:
if (self.image_size < 1).any(): # pyre-ignore
raise ValueError('Image_size provided has invalid values')
else:
self.image_size = None
def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
kwargs.pop('cameras', None)
return super().get_ndc_camera_transform(**kwargs)
def transform_points_screen(self,
points,
eps: Optional[float] = None,
**kwargs) -> torch.Tensor:
kwargs.pop('cameras', None)
return super().transform_points_screen(points, eps, **kwargs)
def __getitem__(self, index: Union[slice, int, torch.Tensor, List, Tuple]):
"""Slice the cameras by batch dim.
Args:
index (Union[slice, int, torch.Tensor, List, Tuple]):
index for slicing.
Returns:
MMCamerasBase: sliced cameras.
"""
return super(cameras.OrthographicCameras, self).__getitem__(index)
@classmethod
def get_default_projection_matrix(cls, **args) -> torch.Tensor:
"""Class method. Calculate the projective transformation matrix by
default parameters.
.. code-block:: python
fx = focal_length[:,0]
fy = focal_length[:,1]
px = principal_point[:,0]
py = principal_point[:,1]
K = [[fx, 0, 0, px],
[0, fy, 0, py],
[0, 0, 1, 0],
[0, 0, 0, 1],]
Args:
**kwargs: parameters for the projection can be passed in as keyword
arguments to override the default values.
Return:
a `torch.Tensor` which represents a batch of projection matrices K
of shape (N, 4, 4)
"""
batch_size = args.get('batch_size', 1)
device = args.get('device', 'cpu')
focal_length = args.get('focal_length')
principal_point = args.get('principal_point')
return cameras._get_sfm_calibration_matrix(
N=batch_size,
device=device,
focal_length=focal_length,
principal_point=principal_point,
orthographic=True)
@CAMERAS.register_module(name=('FoVOrthographicCameras', 'FoVOrthographic',
'fovorthographic'))
class FoVOrthographicCameras(cameras.FoVOrthographicCameras, MMCamerasBase):
"""Inherited from Pytorch3D `FoVOrthographicCameras`."""
def __init__(
self,
znear: Union[torch.Tensor, int, float] = 1.0,
zfar: Union[torch.Tensor, int, float] = 100.0,
max_y: Union[torch.Tensor, int, float] = 1.0,
min_y: Union[torch.Tensor, int, float] = -1.0,
max_x: Union[torch.Tensor, int, float] = 1.0,
min_x: Union[torch.Tensor, int, float] = -1.0,
scale_xyz: Union[Iterable[float],
Iterable[int]] = ((1.0, 1.0, 1.0), ), # (1, 3)
R: Optional[torch.Tensor] = None,
T: Optional[torch.Tensor] = None,
K: Optional[torch.Tensor] = None,
device: Union[torch.device, str] = 'cpu',
convention: str = 'pytorch3d',
**kwargs):
"""reimplemented __init__, add `convention`.
Args:
znear (Union[torch.Tensor, int, float], optional):
Defaults to 1.0.
zfar (Union[torch.Tensor, int, float], optional):
Defaults to 100.0.
max_y (Union[torch.Tensor, int, float], optional):
Defaults to 1.0.
min_y (Union[torch.Tensor, int, float], optional):
Defaults to -1.0.
max_x (Union[torch.Tensor, int, float], optional):
Defaults to 1.0.
min_x (Union[torch.Tensor, int, float], optional):
Defaults to -1.0.
scale_xyz (Union[Iterable[float], Iterable[int]], optional):
Defaults to ((1.0, 1.0, 1.0), ).
T (Optional[torch.Tensor], optional): Defaults to None.
K (Optional[torch.Tensor], optional): Defaults to None.
device (Union[torch.device, str], optional): Defaults to 'cpu'.
convention (str, optional): Defaults to 'pytorch3d'.
"""
kwargs.update(_is_perspective=False, _in_ndc=True)
kwargs.pop('in_ndc', None)
kwargs.pop('is_perspective', None)
super(cameras.FoVOrthographicCameras,
self).__init__(device=device,
znear=znear,
zfar=zfar,
max_y=max_y,
min_y=min_y,
max_x=max_x,
min_x=min_x,
scale_xyz=scale_xyz,
R=R,
T=T,
K=K,
convention=convention,
**kwargs)
def __getitem__(self, index: Union[slice, int, torch.Tensor, List, Tuple]):
"""Slice the cameras by batch dim.
Args:
index (Union[slice, int, torch.Tensor, List, Tuple]):
index for slicing.
Returns:
MMCamerasBase: sliced cameras.
"""
return super(cameras.FoVOrthographicCameras, self).__getitem__(index)
@classmethod
def get_default_projection_matrix(cls, **args) -> torch.Tensor:
"""Class method. Calculate the projective transformation matrix by
default parameters.
.. code-block:: python
scale_x = 2 / (max_x - min_x)
scale_y = 2 / (max_y - min_y)
scale_z = 2 / (far-near)
mid_x = (max_x + min_x) / (max_x - min_x)
mix_y = (max_y + min_y) / (max_y - min_y)
mid_z = (far + near) / (far - near)
K = [[scale_x, 0, 0, -mid_x],
[0, scale_y, 0, -mix_y],
[0, 0, -scale_z, -mid_z],
[0, 0, 0, 1],]
Args:
**kwargs: parameters for the projection can be passed in as keyword
arguments to override the default values.
Return:
a `torch.Tensor` which represents a batch of projection matrices K
of shape (N, 4, 4)
"""
znear = args.get('znear', 1.0)
zfar = args.get('zfar', 100.0)
max_y = args.get('max_y', 1.0)
min_y = args.get('min_y', -1.0)
max_x = args.get('max_x', 1.0)
min_x = args.get('min_x', -1.0)
scale_xyz = args.get(
'scale_xyz',
((1.0, 1.0, 1.0), ),
)
batch_size = args.get('batch_size', 1)
K = torch.zeros((1, 4, 4), dtype=torch.float32)
ones = torch.ones((1), dtype=torch.float32)
z_sign = +1.0
if not isinstance(scale_xyz, torch.Tensor):
scale_xyz = torch.Tensor(scale_xyz)
K[:, 0, 0] = (2.0 / (max_x - min_x)) * scale_xyz[:, 0]
K[:, 1, 1] = (2.0 / (max_y - min_y)) * scale_xyz[:, 1]
K[:, 0, 3] = -(max_x + min_x) / (max_x - min_x)
K[:, 1, 3] = -(max_y + min_y) / (max_y - min_y)
K[:, 3, 3] = ones
# NOTE: This maps the z coordinate to the range [0, 1] and replaces the
# the OpenGL z normalization to [-1, 1]
K[:, 2, 2] = z_sign * (1.0 / (zfar - znear)) * scale_xyz[:, 2]
K[:, 2, 3] = -znear / (zfar - znear)
K = K.repeat(batch_size, 1, 1)
return K
def to_ndc_(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
def to_screen_(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
def to_ndc(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
def to_screen(self, **kwargs):
"""Not implemented."""
raise NotImplementedError()
def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
kwargs.pop('cameras', None)
return super().get_ndc_camera_transform(**kwargs)
def transform_points_screen(self,
points,
eps: Optional[float] = None,
**kwargs) -> torch.Tensor:
kwargs.pop('cameras', None)
return super().transform_points_screen(points, eps, **kwargs)
def concat_cameras(cameras_list: List[MMCamerasBase]) -> MMCamerasBase:
"""Concat a list of cameras of the same type.
Args:
cameras_list (List[cameras.CamerasBase]): a list of cameras.
Returns:
MMCamerasBase: the returned cameras concated following the batch
dim.
"""
K = []
R = []
T = []
is_perspective = cameras_list[0].is_perspective()
in_ndc = cameras_list[0].in_ndc()
cam_cls = type(cameras_list[0])
image_size = cameras_list[0].get_image_size()
device = cameras_list[0].device
for cam in cameras_list:
assert type(cam) is cam_cls
assert cam.in_ndc() is in_ndc
assert cam.is_perspective() is is_perspective
assert cam.device is device
K.append(cam.K)
R.append(cam.R)
T.append(cam.T)
K = torch.cat(K)
R = torch.cat(R)
T = torch.cat(T)
concated_cameras = cam_cls(K=K,
R=R,
T=T,
device=device,
is_perspective=is_perspective,
in_ndc=in_ndc,
image_size=image_size)
return concated_cameras
def compute_orbit_cameras(
K: Union[torch.Tensor, np.ndarray, None] = None,
elev: float = 0,
azim: float = 0,
dist: float = 2.7,
at: Union[torch.Tensor, List, Tuple] = (0, 0, 0),
batch_size: int = 1,
orbit_speed: Union[float, Tuple[float, float]] = 0,
dist_speed: Optional[float] = 0,
convention: str = 'pytorch3d',
) -> Union[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Generate a sequence of moving cameras following an orbit.
Args:
K (Union[torch.Tensor, np.ndarray, None], optional):
Intrinsic matrix. Will generate a default K if None.
Defaults to None.
elev (float, optional): This is the angle between the
vector from the object to the camera, and the horizontal
plane y = 0 (xz-plane).
Defaults to 0.
azim (float, optional): angle in degrees or radians. The vector
from the object to the camera is projected onto a horizontal
plane y = 0. azim is the angle between the projected vector and a
reference vector at (0, 0, 1) on the reference plane (the
horizontal plane).
Defaults to 0.
dist (float, optional): distance of the camera from the object.
Defaults to 2.7.
at (Union[torch.Tensor, List, Tuple], optional):
the position of the object(s) in world coordinates.
Defaults to (0, 0, 0).
batch_size (int, optional): number of frames. Defaults to 1.
orbit_speed (Union[float, Tuple[float, float]], optional):
degree speed of camera moving along the orbit.
Could be one or two number. One number for only elev speed,
two number for both.
Defaults to 0.
dist_speed (Optional[float], optional):
speed of camera moving along the center line.
Defaults to 0.
convention (str, optional): Camera convention. Defaults to 'pytorch3d'.
Returns:
Union[torch.Tensor, torch.Tensor, torch.Tensor]: computed K, R, T.
"""
if not isinstance(orbit_speed, Iterable):
orbit_speed = (orbit_speed, 0.0)
if not isinstance(at, torch.Tensor):
at = torch.Tensor(at)
at = at.view(1, 3)
if batch_size > 1 and orbit_speed[0] != 0:
azim = torch.linspace(azim, azim + batch_size * orbit_speed[0],
batch_size)
if batch_size > 1 and orbit_speed[1] != 0:
elev = torch.linspace(elev, elev + batch_size * orbit_speed[1],
batch_size)
if batch_size > 1 and dist_speed != 0:
dist = torch.linspace(dist, dist + batch_size * dist_speed, batch_size)
if convention == 'opencv':
rotation_compensate = ee_to_rotmat(
torch.Tensor([math.pi, 0, 0]).view(1, 3))
at = rotation_compensate.permute(0, 2, 1) @ at.view(-1, 3, 1)
at = at.view(1, 3)
R, T = cameras.look_at_view_transform(dist=dist,
elev=elev,
azim=azim,
at=at)
if K is None:
K = FoVPerspectiveCameras.get_default_projection_matrix(
batch_size=batch_size)
if convention == 'opencv':
rotation_compensate = ee_to_rotmat(
torch.Tensor([math.pi, 0, 0]).view(1, 3))
R = rotation_compensate.permute(0, 2, 1) @ R
return K, R, T
def compute_direction_cameras(
K: Union[torch.Tensor, np.ndarray, None] = None,
at: Union[torch.Tensor, List, Tuple, None] = None,
eye: Union[torch.Tensor, List, Tuple, None] = None,
plane: Union[Iterable[torch.Tensor], None] = None,
dist: float = 1.0,
batch_size: int = 1,
dist_speed: float = 0.0,
z_vec: Union[torch.Tensor, List, Tuple, None] = None,
y_vec: Union[torch.Tensor, List, Tuple] = (0, 1, 0),
convention: str = 'pytorch3d',
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Generate a sequence of moving cameras along a direction.
We need a `z_vec`, `y_vec` to generate `x_vec` so as to get the `R` matrix.
And we need `eye` as `T` matrix.
`K` matrix could be set or use default.
We recommend `y_vec` as default (0, 1, 0), and it will be orthogonal
decomposed. The `x_vec` will be generated by cross production from
`y_vec` and `x_vec`.
You can set `z_vec` by: 1. set `at`, `dist`, `dist_speed`, `plane`,
`batch_size` to get `eye`, then get `z_vec`.
2. set `at`, `eye` directly and get `z_vec`.
3. set `z_vec` directly and:
1). set `eye` and `dist`.
2). set `at`, `dist`, `dist_speed`,
`batch_size` then get `eye`.
When we have `eye`, `z_vec`, `y_vec`, we will have `R` and `T`.
Args:
K (Union[torch.Tensor, np.ndarray, None], optional):
Intrinsic matrix. Will generate a default K if None.
Defaults to None.
at (Union[torch.Tensor, List, Tuple], optional):
the position of the object(s) in world coordinates.
Required.
Defaults to None.
eye (Union[torch.Tensor, List, Tuple], optional):
the position of the camera(s) in world coordinates.
If eye is not None, it will override the camera position derived
from plane, dist, dist_speed.
Defaults to None.
plane (Optional[Iterable[torch.Tensor, List, Tuple]], optional):
The plane of your z direction normal.
Should be a tuple or list containing two vectors of shape (N, 3).
Defaults to None.
dist (float, optional): distance to at.
Defaults to 1.0.
dist_speed (float, optional): distance moving speed.
Defaults to 1.0.
batch_size (int, optional): number of frames.
Defaults to 1.
z_vec (Union[torch.Tensor, List, Tuple], optional):
z direction of shape (-1, 3). If z_vec is not None, it will
override plane, dist, dist_speed.
Defaults to None.
y_vec (Union[torch.Tensor, List, Tuple], optional):
Will only be used when z_vec is used.
Defaults to (0, 1, 0).
convention (str, optional): Camera convention.
Defaults to 'pytorch3d'.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: computed K, R, T.
"""
def norm_vec(vec):
return vec / torch.sqrt((vec * vec).sum())
if z_vec is None:
assert at is not None
at = torch.Tensor(at).view(-1, 3)
if eye is None:
assert plane is not None
dist = torch.linspace(dist, dist + batch_size * dist_speed,
batch_size)
vec1 = torch.Tensor(plane[0]).view(-1, 3)
norm_vec1 = norm_vec(vec1)
vec2 = torch.Tensor(plane[1]).view(-1, 3)
norm_vec2 = norm_vec(vec2)
norm = torch.cross(norm_vec1, norm_vec2)
normed_norm = norm_vec(norm)
eye = at + normed_norm * dist
else:
eye = torch.Tensor(eye).view(-1, 3)
norm = eye - at
normed_norm = norm_vec(norm)
z_vec = -normed_norm
else:
z_vec = torch.Tensor(z_vec).view(-1, 3)
z_vec = norm_vec(z_vec)
if eye is None:
assert at is not None
at = torch.Tensor(at).view(-1, 3)
dist = torch.linspace(dist, dist + batch_size * dist_speed,
batch_size)
eye = -z_vec * dist + at
eye = torch.Tensor(eye).view(-1, 3)
assert eye is not None
z_vec = norm_vec(z_vec)
normed_norm = -z_vec
z_vec = z_vec.view(-1, 3)
y_vec = torch.Tensor(y_vec).view(-1, 3)
y_vec = y_vec - torch.bmm(y_vec.view(-1, 1, 3), z_vec.view(-1, 3, 1)).view(
-1, 1) * z_vec
y_vec = norm_vec(y_vec)
x_vec = torch.cross(y_vec, z_vec)
R = torch.cat(
[x_vec.view(-1, 3, 1),
y_vec.view(-1, 3, 1),
z_vec.view(-1, 3, 1)], 1).view(-1, 3, 3)
T = eye
R = R.permute(0, 2, 1)
_, T = convert_world_view(R=R, T=T)
if K is None:
K = FoVPerspectiveCameras.get_default_projection_matrix(
batch_size=batch_size)
K, R, T = convert_camera_matrix(K=K,
R=R,
T=T,
is_perspective=True,
convention_src='pytorch3d',
convention_dst=convention)
return K, R, T
|