Spaces:
Running
on
L40S
Running
on
L40S
File size: 19,498 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import cv2
import mmcv
import numpy as np
import torch
from mmcv.parallel import collate
from mmcv.runner import load_checkpoint
from detrsmpl.data.datasets.pipelines import Compose
from detrsmpl.models.architectures.builder import build_architecture
from detrsmpl.models.backbones.builder import build_backbone
from detrsmpl.utils.demo_utils import box2cs, xywh2xyxy, xyxy2xywh
def init_model(config, checkpoint=None, device='cuda:0'):
"""Initialize a model from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed model.
(nn.Module, None): The constructed extractor model
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
config.data.test.test_mode = True
model = build_architecture(config.model)
if checkpoint is not None:
# load model checkpoint
load_checkpoint(model, checkpoint, map_location=device)
# save the config in the model for convenience
model.cfg = config
model.to(device)
model.eval()
extractor = None
if config.model.type == 'VideoBodyModelEstimator':
extractor = build_backbone(config.extractor.backbone)
if config.extractor.checkpoint is not None:
# load model checkpoint
load_checkpoint(extractor, config.extractor.checkpoint)
extractor.cfg = config
extractor.to(device)
extractor.eval()
return model, extractor
class LoadImage:
"""A simple pipeline to load image."""
def __init__(self, color_type='color', channel_order='bgr'):
self.color_type = color_type
self.channel_order = channel_order
def __call__(self, results):
"""Call function to load images into results.
Args:
results (dict): A result dict contains the image_path.
Returns:
dict: ``results`` will be returned containing loaded image.
"""
if isinstance(results['image_path'], str):
results['image_file'] = results['image_path']
img = mmcv.imread(results['image_path'], self.color_type,
self.channel_order)
elif isinstance(results['image_path'], np.ndarray):
results['image_file'] = ''
if self.color_type == 'color' and self.channel_order == 'rgb':
img = cv2.cvtColor(results['image_path'], cv2.COLOR_BGR2RGB)
else:
img = results['image_path']
else:
raise TypeError('"image_path" must be a numpy array or a str or '
'a pathlib.Path object')
results['img'] = img
return results
def inference_image_based_model(
model,
img_or_path,
det_results,
bbox_thr=None,
format='xywh',
):
"""Inference a single image with a list of person bounding boxes.
Args:
model (nn.Module): The loaded pose model.
img_or_path (Union[str, np.ndarray]): Image filename or loaded image.
det_results (List(dict)): the item in the dict may contain
'bbox' and/or 'track_id'.
'bbox' (4, ) or (5, ): The person bounding box, which contains
4 box coordinates (and score).
'track_id' (int): The unique id for each human instance.
bbox_thr (float, optional): Threshold for bounding boxes.
Only bboxes with higher scores will be fed into the pose detector.
If bbox_thr is None, ignore it. Defaults to None.
format (str, optional): bbox format ('xyxy' | 'xywh'). Default: 'xywh'.
'xyxy' means (left, top, right, bottom),
'xywh' means (left, top, width, height).
Returns:
list[dict]: Each item in the list is a dictionary,
containing the bbox: (left, top, right, bottom, [score]),
SMPL parameters, vertices, kp3d, and camera.
"""
# only two kinds of bbox format is supported.
assert format in ['xyxy', 'xywh']
mesh_results = []
if len(det_results) == 0:
return []
# Change for-loop preprocess each bbox to preprocess all bboxes at once.
bboxes = np.array([box['bbox'] for box in det_results])
# Select bboxes by score threshold
if bbox_thr is not None:
assert bboxes.shape[1] == 5
valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0]
bboxes = bboxes[valid_idx]
det_results = [det_results[i] for i in valid_idx]
if format == 'xyxy':
bboxes_xyxy = bboxes
bboxes_xywh = xyxy2xywh(bboxes)
else:
# format is already 'xywh'
bboxes_xywh = bboxes
bboxes_xyxy = xywh2xyxy(bboxes)
# if bbox_thr remove all bounding box
if len(bboxes_xywh) == 0:
return []
cfg = model.cfg
device = next(model.parameters()).device
# build the data pipeline
inference_pipeline = [LoadImage()] + cfg.inference_pipeline
inference_pipeline = Compose(inference_pipeline)
assert len(bboxes[0]) in [4, 5]
batch_data = []
input_size = cfg['img_res']
aspect_ratio = 1 if isinstance(input_size,
int) else input_size[0] / input_size[1]
for i, bbox in enumerate(bboxes_xywh):
center, scale = box2cs(bbox, aspect_ratio, bbox_scale_factor=1.25)
# prepare data
data = {
'image_path': img_or_path,
'center': center,
'scale': scale,
'rotation': 0,
'bbox_score': bbox[4] if len(bbox) == 5 else 1,
'sample_idx': i,
}
data = inference_pipeline(data)
batch_data.append(data)
batch_data = collate(batch_data, samples_per_gpu=1)
if next(model.parameters()).is_cuda:
# scatter not work so just move image to cuda device
batch_data['img'] = batch_data['img'].to(device)
# get all img_metas of each bounding box
batch_data['img_metas'] = [
img_metas[0] for img_metas in batch_data['img_metas'].data
]
# forward the model
with torch.no_grad():
results = model(
img=batch_data['img'],
img_metas=batch_data['img_metas'],
sample_idx=batch_data['sample_idx'],
)
for idx in range(len(det_results)):
mesh_result = det_results[idx].copy()
mesh_result['bbox'] = bboxes_xyxy[idx]
mesh_result['camera'] = results['camera'][idx]
mesh_result['smpl_pose'] = results['smpl_pose'][idx]
mesh_result['smpl_beta'] = results['smpl_beta'][idx]
mesh_result['vertices'] = results['vertices'][idx]
mesh_result['keypoints_3d'] = results['keypoints_3d'][idx]
mesh_results.append(mesh_result)
return mesh_results
def inference_video_based_model(model,
extracted_results,
with_track_id=True,
causal=True):
"""Inference SMPL parameters from extracted featutres using a video-based
model.
Args:
model (nn.Module): The loaded mesh estimation model.
extracted_results (List[List[Dict]]): Multi-frame feature extraction
results stored in a nested list. Each element of the outer list
is the feature extraction results of a single frame, and each
element of the inner list is the feature information of one person,
which contains:
features (ndarray): extracted features
track_id (int): unique id of each person, required when
``with_track_id==True```
bbox ((4, ) or (5, )): left, right, top, bottom, [score]
with_track_id: If True, the element in extracted_results is expected to
contain "track_id", which will be used to gather the feature
sequence of a person from multiple frames. Otherwise, the extracted
results in each frame are expected to have a consistent number and
order of identities. Default is True.
causal (bool): If True, the target frame is the first frame in
a sequence. Otherwise, the target frame is in the middle of a
sequence.
Returns:
list[dict]: Each item in the list is a dictionary, which contains:
SMPL parameters, vertices, kp3d, and camera.
"""
cfg = model.cfg
device = next(model.parameters()).device
seq_len = cfg.data.test.seq_len
mesh_results = []
# build the data pipeline
inference_pipeline = Compose(cfg.inference_pipeline)
target_idx = 0 if causal else len(extracted_results) // 2
input_features = _gather_input_features(extracted_results)
feature_sequences = _collate_feature_sequence(input_features,
with_track_id, target_idx)
if not feature_sequences:
return mesh_results
batch_data = []
for i, seq in enumerate(feature_sequences):
data = {
'features': seq['features'],
'sample_idx': i,
}
data = inference_pipeline(data)
batch_data.append(data)
batch_data = collate(batch_data, samples_per_gpu=len(batch_data))
if next(model.parameters()).is_cuda:
# scatter not work so just move image to cuda device
batch_data['features'] = batch_data['features'].to(device)
with torch.no_grad():
results = model(features=batch_data['features'],
img_metas=batch_data['img_metas'],
sample_idx=batch_data['sample_idx'])
results['camera'] = results['camera'].reshape(-1, seq_len, 3)
results['smpl_pose'] = results['smpl_pose'].reshape(-1, seq_len, 24, 3, 3)
results['smpl_beta'] = results['smpl_beta'].reshape(-1, seq_len, 10)
results['vertices'] = results['vertices'].reshape(-1, seq_len, 6890, 3)
results['keypoints_3d'] = results['keypoints_3d'].reshape(
-1, seq_len, 17, 3)
for idx in range(len(feature_sequences)):
mesh_result = dict()
mesh_result['camera'] = results['camera'][idx, target_idx]
mesh_result['smpl_pose'] = results['smpl_pose'][idx, target_idx]
mesh_result['smpl_beta'] = results['smpl_beta'][idx, target_idx]
mesh_result['vertices'] = results['vertices'][idx, target_idx]
mesh_result['keypoints_3d'] = results['keypoints_3d'][idx, target_idx]
mesh_result['bbox'] = extracted_results[target_idx][idx]['bbox']
# 'track_id' is not included in results generated by mmdet
if 'track_id' in extracted_results[target_idx][idx].keys():
mesh_result['track_id'] = extracted_results[target_idx][idx][
'track_id']
mesh_results.append(mesh_result)
return mesh_results
def feature_extract(
model,
img_or_path,
det_results,
bbox_thr=None,
format='xywh',
):
"""Extract image features with a list of person bounding boxes.
Args:
model (nn.Module): The loaded feature extraction model.
img_or_path (Union[str, np.ndarray]): Image filename or loaded image.
det_results (List(dict)): the item in the dict may contain
'bbox' and/or 'track_id'.
'bbox' (4, ) or (5, ): The person bounding box, which contains
4 box coordinates (and score).
'track_id' (int): The unique id for each human instance.
bbox_thr (float, optional): Threshold for bounding boxes.
If bbox_thr is None, ignore it. Defaults to None.
format (str, optional): bbox format. Default: 'xywh'.
'xyxy' means (left, top, right, bottom),
'xywh' means (left, top, width, height).
Returns:
list[dict]: The bbox & pose info,
containing the bbox: (left, top, right, bottom, [score])
and the features.
"""
# only two kinds of bbox format is supported.
assert format in ['xyxy', 'xywh']
cfg = model.cfg
device = next(model.parameters()).device
feature_results = []
if len(det_results) == 0:
return feature_results
# Change for-loop preprocess each bbox to preprocess all bboxes at once.
bboxes = np.array([box['bbox'] for box in det_results])
assert len(bboxes[0]) in [4, 5]
# Select bboxes by score threshold
if bbox_thr is not None:
assert bboxes.shape[1] == 5
valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0]
bboxes = bboxes[valid_idx]
det_results = [det_results[i] for i in valid_idx]
# if bbox_thr remove all bounding box
if len(bboxes) == 0:
return feature_results
if format == 'xyxy':
bboxes_xyxy = bboxes
bboxes_xywh = xyxy2xywh(bboxes)
else:
# format is already 'xywh'
bboxes_xywh = bboxes
bboxes_xyxy = xywh2xyxy(bboxes)
# build the data pipeline
extractor_pipeline = [LoadImage()] + cfg.extractor_pipeline
extractor_pipeline = Compose(extractor_pipeline)
batch_data = []
input_size = cfg['img_res']
aspect_ratio = 1 if isinstance(input_size,
int) else input_size[0] / input_size[1]
for i, bbox in enumerate(bboxes_xywh):
center, scale = box2cs(bbox, aspect_ratio, bbox_scale_factor=1.25)
# prepare data
data = {
'image_path': img_or_path,
'center': center,
'scale': scale,
'rotation': 0,
'bbox_score': bbox[4] if len(bbox) == 5 else 1,
'sample_idx': i,
}
data = extractor_pipeline(data)
batch_data.append(data)
batch_data = collate(batch_data, samples_per_gpu=1)
if next(model.parameters()).is_cuda:
# scatter not work so just move image to cuda device
batch_data['img'] = batch_data['img'].to(device)
# get all img_metas of each bounding box
batch_data['img_metas'] = [
img_metas[0] for img_metas in batch_data['img_metas'].data
]
# forward the model
with torch.no_grad():
results = model(batch_data['img'])
if isinstance(results, list) or isinstance(results, tuple):
results = results[-1].mean(dim=-1).mean(dim=-1)
for idx in range(len(det_results)):
feature_result = det_results[idx].copy()
feature_result['bbox'] = bboxes_xyxy[idx]
feature_result['features'] = results[idx].cpu().numpy()
feature_results.append(feature_result)
return feature_results
def _gather_input_features(extracted_results):
"""Gather input features.
Args:
extracted_results (List[List[Dict]]):
Multi-frame feature extraction results
Returns:
List[List[dict]]: Multi-frame feature extraction results
stored in a nested list. Each element of the outer list is the
feature extraction results of a single frame, and each element of
the inner list is the extracted results of one person,
which contains:
features (ndarray): extracted features
track_id (int): unique id of each person, required when
``with_track_id==True```
"""
sequence_inputs = []
for frame in extracted_results:
frame_inputs = []
for res in frame:
inputs = dict()
if 'features' in res:
inputs['features'] = res['features']
if 'track_id' in res:
inputs['track_id'] = res['track_id']
frame_inputs.append(inputs)
sequence_inputs.append(frame_inputs)
return sequence_inputs
def _collate_feature_sequence(extracted_features,
with_track_id=True,
target_frame=0):
"""Reorganize multi-frame feature extraction results into individual
feature sequences.
Args:
extracted_features (List[List[Dict]]): Multi-frame feature extraction
results stored in a nested list. Each element of the outer list
is the feature extraction results of a single frame, and each
element of the inner list is the extracted results of one person,
which contains:
features (ndarray): extracted features
track_id (int): unique id of each person, required when
``with_track_id==True```
with_track_id (bool): If True, the element in pose_results is expected
to contain "track_id", which will be used to gather the pose
sequence of a person from multiple frames. Otherwise, the pose
results in each frame are expected to have a consistent number and
order of identities. Default is True.
target_frame (int): The index of the target frame. Default: 0.
"""
T = len(extracted_features)
assert T > 0
target_frame = (T + target_frame) % T # convert negative index to positive
N = len(
extracted_features[target_frame]) # use identities in the target frame
if N == 0:
return []
C = extracted_features[target_frame][0]['features'].shape[0]
track_ids = None
if with_track_id:
track_ids = [
res['track_id'] for res in extracted_features[target_frame]
]
feature_sequences = []
for idx in range(N):
feature_seq = dict()
# gather static information
for k, v in extracted_features[target_frame][idx].items():
if k != 'features':
feature_seq[k] = v
# gather keypoints
if not with_track_id:
feature_seq['features'] = np.stack(
[frame[idx]['features'] for frame in extracted_features])
else:
features = np.zeros((T, C), dtype=np.float32)
features[target_frame] = extracted_features[target_frame][idx][
'features']
# find the left most frame containing track_ids[idx]
for frame_idx in range(target_frame - 1, -1, -1):
contains_idx = False
for res in extracted_features[frame_idx]:
if res['track_id'] == track_ids[idx]:
features[frame_idx] = res['features']
contains_idx = True
break
if not contains_idx:
# replicate the left most frame
features[frame_idx] = features[frame_idx + 1]
# find the right most frame containing track_idx[idx]
for frame_idx in range(target_frame + 1, T):
contains_idx = False
for res in extracted_features[frame_idx]:
if res['track_id'] == track_ids[idx]:
features[frame_idx] = res['features']
contains_idx = True
break
if not contains_idx:
# replicate the right most frame
features[frame_idx] = features[frame_idx - 1]
# break
feature_seq['features'] = features
feature_sequences.append(feature_seq)
return feature_sequences
|