File size: 13,214 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import os.path as osp
from glob import glob
import numpy as np
from config.config import cfg
import copy
import json
import cv2
import torch
from pycocotools.coco import COCO
from util.human_models import smpl_x
from util.preprocessing import load_img, process_bbox, load_ply
from util.transforms import rigid_align, rigid_align_batch
from humandata import HumanDataset
import csv

class EHF(HumanDataset):
    def __init__(self, transform, data_split):
        super(EHF, self).__init__(transform, data_split)

        self.transform = transform
        self.data_split = data_split
        self.save_idx = 0
        # self.cam_param = {'R': [-2.98747896, 0.01172457, -0.05704687]}
        # self.cam_param['R'], _ = cv2.Rodrigues(np.array(self.cam_param['R']))
        self.cam_param = {}
        self.img_dir = 'data/data_weichen/ehf'
        self.img_shape = [1200, 1600]
        
        self.annot_path = 'data_tmp/multihuman_data/ehf_val_230908_100.npz'
        self.annot_path_cache = 'data_tmp/cache/ehf_val_cache_230908_100.npz'
        
        if self.use_cache and osp.isfile(self.annot_path_cache):
            print(f'[{self.__class__.__name__}] loading cache from {self.annot_path_cache}')
            self.datalist = self.load_cache(self.annot_path_cache)
        else:
            if self.use_cache:
                print(f'[{self.__class__.__name__}] Cache not found, generating cache...')
            self.datalist = self.load_data(
                train_sample_interval=getattr(cfg, f'{self.__class__.__name__}_train_sample_interval', 1))
            if self.use_cache:
                self.save_cache(self.annot_path_cache, self.datalist)


    def evaluate(self, outs, cur_sample_idx):
        annots = self.datalist
        sample_num = len(outs)
        eval_result = {
            'pa_mpvpe_all': [],
            'pa_mpvpe_l_hand': [],
            'pa_mpvpe_r_hand': [],
            'pa_mpvpe_hand': [],
            'pa_mpvpe_face': [],
            'mpvpe_all': [],
            'mpvpe_l_hand': [],
            'mpvpe_r_hand': [],
            'mpvpe_hand': [],
            'mpvpe_face': [],
            'pa_mpjpe_body': [],
            'pa_mpjpe_l_hand': [],
            'pa_mpjpe_r_hand': [],
            'pa_mpjpe_hand': []
        }
        
        csv_file = f'{cfg.result_dir}/ehf_smplx_error.csv'
        file = open(csv_file, 'a', newline='')
        for n in range(sample_num):
            annot = annots[cur_sample_idx + n]
            ann_id = annot['img_path'].split('/')[-1].split('_')[0]
            out = outs[n]
            ann_idx = out['gt_ann_idx']
            img_path = []
            for ann_id in ann_idx:
                img_path.append(annots[ann_id]['img_path'])
            eval_result['img_path'] = img_path
            eval_result['ann_idx'] = ann_idx
            # MPVPE from all vertices np.dot(self.cam_param['R'], out['smplx_mesh_cam_target'].transpose(0,2,1)).transpose(1,2,0)
            # mesh_gt = np.dot(
            #     self.cam_param['R'], 
            #     out['smplx_mesh_cam_target'].transpose(0,2,1)
            #     ).transpose(1,2,0)
            mesh_gt = out['smplx_mesh_cam_target']
            mesh_out = out['smplx_mesh_cam']

            # mesh_gt_align = rigid_align(mesh_gt, mesh_out)

            # print(mesh_out.shape)
            mesh_out_align = rigid_align_batch(mesh_out, mesh_gt)
            eval_result['pa_mpvpe_all'].append(
                np.sqrt(np.sum(
                    (mesh_out_align - mesh_gt)**2, -1)).mean() * 1000)
            mesh_out_align = mesh_out - np.dot(
                smpl_x.J_regressor,
                mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :] + np.dot(
                    smpl_x.J_regressor,
                    mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :]
            eval_result['mpvpe_all'].append(
                np.sqrt(np.sum(
                    (mesh_out_align - mesh_gt)**2, -1)).mean() * 1000)

            # MPVPE from hand vertices
            mesh_gt_lhand = mesh_gt[:, smpl_x.hand_vertex_idx['left_hand'], :]
            mesh_out_lhand = mesh_out[:, smpl_x.hand_vertex_idx['left_hand'], :]
            mesh_out_lhand_align = rigid_align_batch(mesh_out_lhand, mesh_gt_lhand)
            mesh_gt_rhand = mesh_gt[:, smpl_x.hand_vertex_idx['right_hand'], :]
            mesh_out_rhand = mesh_out[:, smpl_x.hand_vertex_idx['right_hand'], :]
            mesh_out_rhand_align = rigid_align_batch(mesh_out_rhand, mesh_gt_rhand)
            eval_result['pa_mpvpe_l_hand'].append(
                np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() *
                1000)
            eval_result['pa_mpvpe_r_hand'].append(
                np.sqrt(np.sum(
                    (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() *
                1000)
            eval_result['pa_mpvpe_hand'].append(
                (np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() *
                 1000 +
                 np.sqrt(np.sum(
                     (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() *
                 1000) / 2.)

            mesh_out_lhand_align = mesh_out_lhand - np.dot(
                smpl_x.J_regressor,
                mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :] + np.dot(
                    smpl_x.J_regressor,
                    mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :]
            mesh_out_rhand_align = mesh_out_rhand - np.dot(
                smpl_x.J_regressor,
                mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :] + np.dot(
                    smpl_x.J_regressor,
                    mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :]

            eval_result['mpvpe_l_hand'].append(
                np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() *
                1000)
            eval_result['mpvpe_r_hand'].append(
                np.sqrt(np.sum(
                    (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() *
                1000)
            eval_result['mpvpe_hand'].append(
                (np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean() *
                 1000 +
                 np.sqrt(np.sum(
                     (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean() *
                 1000) / 2.)

            # MPVPE from face vertices
            mesh_gt_face = mesh_gt[:, smpl_x.face_vertex_idx, :]
            mesh_out_face = mesh_out[:, smpl_x.face_vertex_idx, :]
            mesh_out_face_align = rigid_align_batch(mesh_out_face, mesh_gt_face)
            eval_result['pa_mpvpe_face'].append(
                np.sqrt(np.sum(
                    (mesh_out_face_align - mesh_gt_face)**2, -1)).mean() * 1000)
            mesh_out_face_align = mesh_out_face - np.dot(
                smpl_x.J_regressor,
                mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['neck'], None, :] + np.dot(
                    smpl_x.J_regressor,
                    mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['neck'], None, :]
            eval_result['mpvpe_face'].append(
                np.sqrt(np.sum(
                    (mesh_out_face_align - mesh_gt_face)**2, -1)).mean() * 1000)

            # MPJPE from body joints
            joint_gt_body = np.dot(smpl_x.j14_regressor, mesh_gt).transpose(1,0,2)
            joint_out_body = np.dot(smpl_x.j14_regressor, mesh_out).transpose(1,0,2)
            joint_out_body_align = rigid_align_batch(joint_out_body, joint_gt_body)
            eval_result['pa_mpjpe_body'].append(
                np.sqrt(np.sum(
                    (joint_out_body_align - joint_gt_body)**2, -1)).mean() *
                1000)

            # MPJPE from hand joints
            joint_gt_lhand = np.dot(smpl_x.orig_hand_regressor['left'],
                                    mesh_gt).transpose(1,0,2)
            joint_out_lhand = np.dot(smpl_x.orig_hand_regressor['left'],
                                     mesh_out).transpose(1,0,2)
            joint_out_lhand_align = rigid_align_batch(joint_out_lhand,
                                                joint_gt_lhand)
            joint_gt_rhand = np.dot(smpl_x.orig_hand_regressor['right'],
                                    mesh_gt).transpose(1,0,2)
            joint_out_rhand = np.dot(smpl_x.orig_hand_regressor['right'],
                                     mesh_out).transpose(1,0,2)
            joint_out_rhand_align = rigid_align_batch(joint_out_rhand,
                                                joint_gt_rhand)
            eval_result['pa_mpjpe_l_hand'].append(
                np.sqrt(np.sum(
                    (joint_out_lhand_align - joint_gt_lhand)**2, -1)).mean() *
                1000)
            eval_result['pa_mpjpe_r_hand'].append(
                np.sqrt(np.sum(
                    (joint_out_rhand_align - joint_gt_rhand)**2, 1)).mean() *
                1000)
            eval_result['pa_mpjpe_hand'].append(
                (np.sqrt(np.sum(
                    (joint_out_lhand_align - joint_gt_lhand)**2, -1)).mean() *
                 1000 +
                 np.sqrt(np.sum(
                     (joint_out_rhand_align - joint_gt_rhand)**2, -1)).mean() *
                 1000) / 2.)
            save_error=True
            if save_error:
                writer = csv.writer(file)
                new_line = [ann_idx[n],img_path[n], eval_result['mpvpe_all'][-1], eval_result['pa_mpvpe_all'][-1]]
                writer.writerow(new_line)
                self.save_idx += 1
                
            # vis = cfg.vis
            

        for k,v in eval_result.items():
            if k != 'img_path' and k != 'ann_idx':
                
                if len(v)>1:
                    eval_result[k] = np.concatenate(v,axis=0)
                else:
                    eval_result[k] = np.array(v)
        return eval_result

    def print_eval_result(self, eval_result):
        print('======EHF======')
        print('PA MPVPE (All): %.2f mm' % np.mean(eval_result['pa_mpvpe_all']))
        print('PA MPVPE (L-Hands): %.2f mm' %
              np.mean(eval_result['pa_mpvpe_l_hand']))
        print('PA MPVPE (R-Hands): %.2f mm' %
              np.mean(eval_result['pa_mpvpe_r_hand']))
        print('PA MPVPE (Hands): %.2f mm' %
              np.mean(eval_result['pa_mpvpe_hand']))
        print('PA MPVPE (Face): %.2f mm' %
              np.mean(eval_result['pa_mpvpe_face']))
        print()

        print('MPVPE (All): %.2f mm' % np.mean(eval_result['mpvpe_all']))
        print('MPVPE (L-Hands): %.2f mm' %
              np.mean(eval_result['mpvpe_l_hand']))
        print('MPVPE (R-Hands): %.2f mm' %
              np.mean(eval_result['mpvpe_r_hand']))
        print('MPVPE (Hands): %.2f mm' % np.mean(eval_result['mpvpe_hand']))
        print('MPVPE (Face): %.2f mm' % np.mean(eval_result['mpvpe_face']))
        print()

        print('PA MPJPE (Body): %.2f mm' %
              np.mean(eval_result['pa_mpjpe_body']))
        print('PA MPJPE (L-Hands): %.2f mm' %
              np.mean(eval_result['pa_mpjpe_l_hand']))
        print('PA MPJPE (R-Hands): %.2f mm' %
              np.mean(eval_result['pa_mpjpe_r_hand']))
        print('PA MPJPE (Hands): %.2f mm' %
              np.mean(eval_result['pa_mpjpe_hand']))
        out_file = osp.join(cfg.result_dir,'ehf_test.txt')
        if os.path.exists(out_file):
            f = open(out_file, 'a+')
        else:
            f = open(out_file, 'w', encoding="utf-8")
        
        f.write('\n')
        f.write(f'{cfg.exp_name}\n')
        f.write(f'EHF dataset: \n')
        f.write('PA MPVPE (All): %.2f mm\n' %
                np.mean(eval_result['pa_mpvpe_all']))
        f.write('PA MPVPE (L-Hands): %.2f mm\n' %
                np.mean(eval_result['pa_mpvpe_l_hand']))
        f.write('PA MPVPE (R-Hands): %.2f mm\n' %
                np.mean(eval_result['pa_mpvpe_r_hand']))
        f.write('PA MPVPE (Hands): %.2f mm\n' %
                np.mean(eval_result['pa_mpvpe_hand']))
        f.write('PA MPVPE (Face): %.2f mm\n' %
                np.mean(eval_result['pa_mpvpe_face']))
        f.write('MPVPE (All): %.2f mm\n' % np.mean(eval_result['mpvpe_all']))
        f.write('MPVPE (L-Hands): %.2f mm\n' %
                np.mean(eval_result['mpvpe_l_hand']))
        f.write('MPVPE (R-Hands): %.2f mm\n' %
                np.mean(eval_result['mpvpe_r_hand']))
        f.write('MPVPE (Hands): %.2f mm\n' % np.mean(eval_result['mpvpe_hand']))
        f.write('MPVPE (Face): %.2f mm\n' % np.mean(eval_result['mpvpe_face']))
        f.write('PA MPJPE (Body): %.2f mm\n' %
                np.mean(eval_result['pa_mpjpe_body']))
        f.write('PA MPJPE (L-Hands): %.2f mm\n' %
                np.mean(eval_result['pa_mpjpe_l_hand']))
        f.write('PA MPJPE (R-Hands): %.2f mm\n' %
                np.mean(eval_result['pa_mpjpe_r_hand']))
        f.write('PA MPJPE (Hands): %.2f mm\n' %
                np.mean(eval_result['pa_mpjpe_hand']))
        
        f.close()