File size: 5,868 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest

import mmcv

try:
    import torch
except ImportError:
    torch = None
else:
    import torch.nn as nn


def test_assert_dict_contains_subset():
    dict_obj = {'a': 'test1', 'b': 2, 'c': (4, 6)}

    # case 1
    expected_subset = {'a': 'test1', 'b': 2, 'c': (4, 6)}
    assert mmcv.assert_dict_contains_subset(dict_obj, expected_subset)

    # case 2
    expected_subset = {'a': 'test1', 'b': 2, 'c': (6, 4)}
    assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)

    # case 3
    expected_subset = {'a': 'test1', 'b': 2, 'c': None}
    assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)

    # case 4
    expected_subset = {'a': 'test1', 'b': 2, 'd': (4, 6)}
    assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)

    # case 5
    dict_obj = {
        'a': 'test1',
        'b': 2,
        'c': (4, 6),
        'd': np.array([[5, 3, 5], [1, 2, 3]])
    }
    expected_subset = {
        'a': 'test1',
        'b': 2,
        'c': (4, 6),
        'd': np.array([[5, 3, 5], [6, 2, 3]])
    }
    assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)

    # case 6
    dict_obj = {'a': 'test1', 'b': 2, 'c': (4, 6), 'd': np.array([[1]])}
    expected_subset = {'a': 'test1', 'b': 2, 'c': (4, 6), 'd': np.array([[1]])}
    assert mmcv.assert_dict_contains_subset(dict_obj, expected_subset)

    if torch is not None:
        dict_obj = {
            'a': 'test1',
            'b': 2,
            'c': (4, 6),
            'd': torch.tensor([5, 3, 5])
        }

        # case 7
        expected_subset = {'d': torch.tensor([5, 5, 5])}
        assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)

        # case 8
        expected_subset = {'d': torch.tensor([[5, 3, 5], [4, 1, 2]])}
        assert not mmcv.assert_dict_contains_subset(dict_obj, expected_subset)


def test_assert_attrs_equal():

    class TestExample:
        a, b, c = 1, ('wvi', 3), [4.5, 3.14]

        def test_func(self):
            return self.b

    # case 1
    assert mmcv.assert_attrs_equal(TestExample, {
        'a': 1,
        'b': ('wvi', 3),
        'c': [4.5, 3.14]
    })

    # case 2
    assert not mmcv.assert_attrs_equal(TestExample, {
        'a': 1,
        'b': ('wvi', 3),
        'c': [4.5, 3.14, 2]
    })

    # case 3
    assert not mmcv.assert_attrs_equal(TestExample, {
        'bc': 54,
        'c': [4.5, 3.14]
    })

    # case 4
    assert mmcv.assert_attrs_equal(TestExample, {
        'b': ('wvi', 3),
        'test_func': TestExample.test_func
    })

    if torch is not None:

        class TestExample:
            a, b = torch.tensor([1]), torch.tensor([4, 5])

        # case 5
        assert mmcv.assert_attrs_equal(TestExample, {
            'a': torch.tensor([1]),
            'b': torch.tensor([4, 5])
        })

        # case 6
        assert not mmcv.assert_attrs_equal(TestExample, {
            'a': torch.tensor([1]),
            'b': torch.tensor([4, 6])
        })


assert_dict_has_keys_data_1 = [({
    'res_layer': 1,
    'norm_layer': 2,
    'dense_layer': 3
})]
assert_dict_has_keys_data_2 = [(['res_layer', 'dense_layer'], True),
                               (['res_layer', 'conv_layer'], False)]


@pytest.mark.parametrize('obj', assert_dict_has_keys_data_1)
@pytest.mark.parametrize('expected_keys, ret_value',
                         assert_dict_has_keys_data_2)
def test_assert_dict_has_keys(obj, expected_keys, ret_value):
    assert mmcv.assert_dict_has_keys(obj, expected_keys) == ret_value


assert_keys_equal_data_1 = [(['res_layer', 'norm_layer', 'dense_layer'])]
assert_keys_equal_data_2 = [(['res_layer', 'norm_layer', 'dense_layer'], True),
                            (['res_layer', 'dense_layer', 'norm_layer'], True),
                            (['res_layer', 'norm_layer'], False),
                            (['res_layer', 'conv_layer', 'norm_layer'], False)]


@pytest.mark.parametrize('result_keys', assert_keys_equal_data_1)
@pytest.mark.parametrize('target_keys, ret_value', assert_keys_equal_data_2)
def test_assert_keys_equal(result_keys, target_keys, ret_value):
    assert mmcv.assert_keys_equal(result_keys, target_keys) == ret_value


@pytest.mark.skipif(torch is None, reason='requires torch library')
def test_assert_is_norm_layer():
    # case 1
    assert not mmcv.assert_is_norm_layer(nn.Conv3d(3, 64, 3))

    # case 2
    assert mmcv.assert_is_norm_layer(nn.BatchNorm3d(128))

    # case 3
    assert mmcv.assert_is_norm_layer(nn.GroupNorm(8, 64))

    # case 4
    assert not mmcv.assert_is_norm_layer(nn.Sigmoid())


@pytest.mark.skipif(torch is None, reason='requires torch library')
def test_assert_params_all_zeros():
    demo_module = nn.Conv2d(3, 64, 3)
    nn.init.constant_(demo_module.weight, 0)
    nn.init.constant_(demo_module.bias, 0)
    assert mmcv.assert_params_all_zeros(demo_module)

    nn.init.xavier_normal_(demo_module.weight)
    nn.init.constant_(demo_module.bias, 0)
    assert not mmcv.assert_params_all_zeros(demo_module)

    demo_module = nn.Linear(2048, 400, bias=False)
    nn.init.constant_(demo_module.weight, 0)
    assert mmcv.assert_params_all_zeros(demo_module)

    nn.init.normal_(demo_module.weight, mean=0, std=0.01)
    assert not mmcv.assert_params_all_zeros(demo_module)


def test_check_python_script(capsys):
    mmcv.utils.check_python_script('./tests/data/scripts/hello.py zz')
    captured = capsys.readouterr().out
    assert captured == 'hello zz!\n'
    mmcv.utils.check_python_script('./tests/data/scripts/hello.py agent')
    captured = capsys.readouterr().out
    assert captured == 'hello agent!\n'
    # Make sure that wrong cmd raises an error
    with pytest.raises(SystemExit):
        mmcv.utils.check_python_script('./tests/data/scripts/hello.py li zz')