Spaces:
Running
on
L40S
Running
on
L40S
File size: 17,906 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# Copyright (c) OpenMMLab. All rights reserved.
import json
import os.path as osp
import sys
import tempfile
import unittest.mock as mock
from collections import OrderedDict
from unittest.mock import MagicMock, patch
import pytest
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from mmcv.fileio.file_client import PetrelBackend
from mmcv.runner import DistEvalHook as BaseDistEvalHook
from mmcv.runner import EpochBasedRunner
from mmcv.runner import EvalHook as BaseEvalHook
from mmcv.runner import IterBasedRunner
from mmcv.utils import get_logger, scandir
sys.modules['petrel_client'] = MagicMock()
sys.modules['petrel_client.client'] = MagicMock()
class ExampleDataset(Dataset):
def __init__(self):
self.index = 0
self.eval_result = [1, 4, 3, 7, 2, -3, 4, 6]
def __getitem__(self, idx):
results = dict(x=torch.tensor([1]))
return results
def __len__(self):
return 1
@mock.create_autospec
def evaluate(self, results, logger=None):
pass
class EvalDataset(ExampleDataset):
def evaluate(self, results, logger=None):
acc = self.eval_result[self.index]
output = OrderedDict(
acc=acc, index=self.index, score=acc, loss_top=acc)
self.index += 1
return output
class Model(nn.Module):
def __init__(self):
super().__init__()
self.param = nn.Parameter(torch.tensor([1.0]))
def forward(self, x, **kwargs):
return self.param * x
def train_step(self, data_batch, optimizer, **kwargs):
return {'loss': torch.sum(self(data_batch['x']))}
def val_step(self, data_batch, optimizer, **kwargs):
return {'loss': torch.sum(self(data_batch['x']))}
def _build_epoch_runner():
model = Model()
tmp_dir = tempfile.mkdtemp()
runner = EpochBasedRunner(
model=model, work_dir=tmp_dir, logger=get_logger('demo'))
return runner
def _build_iter_runner():
model = Model()
tmp_dir = tempfile.mkdtemp()
runner = IterBasedRunner(
model=model, work_dir=tmp_dir, logger=get_logger('demo'))
return runner
class EvalHook(BaseEvalHook):
_default_greater_keys = ['acc', 'top']
_default_less_keys = ['loss', 'loss_top']
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
class DistEvalHook(BaseDistEvalHook):
greater_keys = ['acc', 'top']
less_keys = ['loss', 'loss_top']
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def test_eval_hook():
with pytest.raises(AssertionError):
# `save_best` should be a str
test_dataset = Model()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best=True)
with pytest.raises(TypeError):
# dataloader must be a pytorch DataLoader
test_dataset = Model()
data_loader = [DataLoader(test_dataset)]
EvalHook(data_loader)
with pytest.raises(ValueError):
# key_indicator must be valid when rule_map is None
test_dataset = ExampleDataset()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best='unsupport')
with pytest.raises(KeyError):
# rule must be in keys of rule_map
test_dataset = ExampleDataset()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best='auto', rule='unsupport')
# if eval_res is an empty dict, print a warning information
with pytest.warns(UserWarning) as record_warnings:
class _EvalDataset(ExampleDataset):
def evaluate(self, results, logger=None):
return {}
test_dataset = _EvalDataset()
data_loader = DataLoader(test_dataset)
eval_hook = EvalHook(data_loader, save_best='auto')
runner = _build_epoch_runner()
runner.register_hook(eval_hook)
runner.run([data_loader], [('train', 1)], 1)
# Since there will be many warnings thrown, we just need to check if the
# expected exceptions are thrown
expected_message = ('Since `eval_res` is an empty dict, the behavior to '
'save the best checkpoint will be skipped in this '
'evaluation.')
for warning in record_warnings:
if str(warning.message) == expected_message:
break
else:
assert False
test_dataset = ExampleDataset()
loader = DataLoader(test_dataset)
model = Model()
data_loader = DataLoader(test_dataset)
eval_hook = EvalHook(data_loader, save_best=None)
with tempfile.TemporaryDirectory() as tmpdir:
# total_epochs = 1
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 1)
test_dataset.evaluate.assert_called_with(
test_dataset, [torch.tensor([1])], logger=runner.logger)
assert runner.meta is None or 'best_score' not in runner.meta[
'hook_msgs']
assert runner.meta is None or 'best_ckpt' not in runner.meta[
'hook_msgs']
# when `save_best` is set to 'auto', first metric will be used.
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, interval=1, save_best='auto')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best acc and corresponding epoch
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, interval=1, save_best='acc')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best loss_top and corresponding epoch
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, interval=1, save_best='loss_top')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_loss_top_epoch_6.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == -3
# total_epochs = 8, return the best score and corresponding epoch
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(
data_loader, interval=1, save_best='score', rule='greater')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_score_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best score using less compare func
# and indicate corresponding epoch
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, save_best='acc', rule='less')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == -3
# Test the EvalHook when resume happened
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, save_best='acc')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 2)
old_ckpt_path = osp.join(tmpdir, 'best_acc_epoch_2.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == old_ckpt_path
assert osp.exists(old_ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 4
resume_from = old_ckpt_path
loader = DataLoader(ExampleDataset())
eval_hook = EvalHook(data_loader, save_best='acc')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.resume(resume_from)
assert runner.meta['hook_msgs']['best_ckpt'] == old_ckpt_path
assert osp.exists(old_ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 4
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
assert not osp.exists(old_ckpt_path)
# test EvalHook with customer test_fn and greater/less keys
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(
data_loader,
save_best='acc',
test_fn=mock.MagicMock(return_value={}),
greater_keys=[],
less_keys=['acc'])
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == -3
# test EvalHook with specified `out_dir`
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
out_dir = 's3://user/data'
eval_hook = EvalHook(
data_loader, interval=1, save_best='auto', out_dir=out_dir)
with patch.object(PetrelBackend, 'put') as mock_put, \
patch.object(PetrelBackend, 'remove') as mock_remove, \
patch.object(PetrelBackend, 'isfile') as mock_isfile, \
tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
basename = osp.basename(runner.work_dir.rstrip(osp.sep))
ckpt_path = f'{out_dir}/{basename}/best_acc_epoch_4.pth'
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert runner.meta['hook_msgs']['best_score'] == 7
assert mock_put.call_count == 3
assert mock_remove.call_count == 2
assert mock_isfile.call_count == 2
@patch('mmcv.engine.single_gpu_test', MagicMock)
@patch('mmcv.engine.multi_gpu_test', MagicMock)
@pytest.mark.parametrize('EvalHookParam', [EvalHook, DistEvalHook])
@pytest.mark.parametrize('_build_demo_runner,by_epoch',
[(_build_epoch_runner, True),
(_build_iter_runner, False)])
def test_start_param(EvalHookParam, _build_demo_runner, by_epoch):
# create dummy data
dataloader = DataLoader(EvalDataset())
# 0.1. dataloader is not a DataLoader object
with pytest.raises(TypeError):
EvalHookParam(dataloader=MagicMock(), interval=-1)
# 0.2. negative interval
with pytest.raises(ValueError):
EvalHookParam(dataloader, interval=-1)
# 0.3. negative start
with pytest.raises(ValueError):
EvalHookParam(dataloader, start=-1)
# 1. start=None, interval=1: perform evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(dataloader, interval=1, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2
# 2. start=1, interval=1: perform evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=1, interval=1, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2
# 3. start=None, interval=2: perform evaluation after epoch 2, 4, 6, etc
runner = _build_demo_runner()
evalhook = EvalHookParam(dataloader, interval=2, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 1 # after epoch 2
# 4. start=1, interval=2: perform evaluation after epoch 1, 3, 5, etc
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=1, interval=2, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 3
# 5. start=0, interval=1: perform evaluation after each epoch and
# before epoch 1.
runner = _build_demo_runner()
evalhook = EvalHookParam(dataloader, start=0, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 3 # before epoch1 and after e1 & e2
# 6. resuming from epoch i, start = x (x<=i), interval =1: perform
# evaluation after each epoch and before the first epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(dataloader, start=1, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
if by_epoch:
runner._epoch = 2
else:
runner._iter = 2
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # before & after epoch 3
# 7. resuming from epoch i, start = i+1/None, interval =1: perform
# evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(dataloader, start=2, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
if by_epoch:
runner._epoch = 1
else:
runner._iter = 1
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # after epoch 2 & 3
@pytest.mark.parametrize('runner,by_epoch,eval_hook_priority',
[(EpochBasedRunner, True, 'NORMAL'),
(EpochBasedRunner, True, 'LOW'),
(IterBasedRunner, False, 'LOW')])
def test_logger(runner, by_epoch, eval_hook_priority):
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(
data_loader, interval=1, by_epoch=by_epoch, save_best='acc')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_logger')
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
runner = EpochBasedRunner(
model=model, optimizer=optimizer, work_dir=tmpdir, logger=logger)
runner.register_logger_hooks(
dict(
interval=1,
hooks=[dict(type='TextLoggerHook', by_epoch=by_epoch)]))
runner.register_timer_hook(dict(type='IterTimerHook'))
runner.register_hook(eval_hook, priority=eval_hook_priority)
runner.run([loader], [('train', 1)], 1)
path = osp.join(tmpdir, next(scandir(tmpdir, '.json')))
with open(path) as fr:
fr.readline() # skip the first line which is `hook_msg`
train_log = json.loads(fr.readline())
assert train_log['mode'] == 'train' and 'time' in train_log
val_log = json.loads(fr.readline())
assert val_log['mode'] == 'val' and 'time' not in val_log
|