File size: 5,368 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch

from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE

_USING_PARROTS = True
try:
    from parrots.autograd import gradcheck
except ImportError:
    from torch.autograd import gradcheck
    _USING_PARROTS = False

# yapf:disable
inputs = [([[[[1., 2.], [3., 4.]]]],
           [[0., 0.5, 0.5, 1., 1., 0]]),
          ([[[[1., 2.], [3., 4.]]]],
           [[0., 0.5, 0.5, 1., 1., np.pi / 2]]),
          ([[[[1., 2.], [3., 4.]],
             [[4., 3.], [2., 1.]]]],
           [[0., 0.5, 0.5, 1., 1., 0]]),
          ([[[[1., 2., 5., 6.], [3., 4., 7., 8.],
              [9., 10., 13., 14.], [11., 12., 15., 16.]]]],
           [[0., 1.5, 1.5, 3., 3., 0]]),
          ([[[[1., 2., 5., 6.], [3., 4., 7., 8.],
              [9., 10., 13., 14.], [11., 12., 15., 16.]]]],
           [[0., 1.5, 1.5, 3., 3., np.pi / 2]])]
outputs = [([[[[1.0, 1.25], [1.5, 1.75]]]],
            [[[[3.0625, 0.4375], [0.4375, 0.0625]]]]),
           ([[[[1.5, 1], [1.75, 1.25]]]],
            [[[[3.0625, 0.4375], [0.4375, 0.0625]]]]),
           ([[[[1.0, 1.25], [1.5, 1.75]],
              [[4.0, 3.75], [3.5, 3.25]]]],
            [[[[3.0625, 0.4375], [0.4375, 0.0625]],
              [[3.0625, 0.4375], [0.4375, 0.0625]]]]),
           ([[[[1.9375, 4.75], [7.5625, 10.375]]]],
            [[[[0.47265625, 0.42968750, 0.42968750, 0.04296875],
               [0.42968750, 0.39062500, 0.39062500, 0.03906250],
               [0.42968750, 0.39062500, 0.39062500, 0.03906250],
               [0.04296875, 0.03906250, 0.03906250, 0.00390625]]]]),
           ([[[[7.5625, 1.9375], [10.375, 4.75]]]],
            [[[[0.47265625, 0.42968750, 0.42968750, 0.04296875],
               [0.42968750, 0.39062500, 0.39062500, 0.03906250],
               [0.42968750, 0.39062500, 0.39062500, 0.03906250],
               [0.04296875, 0.03906250, 0.03906250, 0.00390625]]]])]
# yapf:enable

pool_h = 2
pool_w = 2
spatial_scale = 1.0
sampling_ratio = 2


def _test_roialign_rotated_gradcheck(device, dtype):
    try:
        from mmcv.ops import RoIAlignRotated
    except ModuleNotFoundError:
        pytest.skip('RoIAlignRotated op is not successfully compiled')
    if dtype is torch.half:
        pytest.skip('grad check does not support fp16')
    for case in inputs:
        np_input = np.array(case[0])
        np_rois = np.array(case[1])

        x = torch.tensor(
            np_input, dtype=dtype, device=device, requires_grad=True)
        rois = torch.tensor(np_rois, dtype=dtype, device=device)

        froipool = RoIAlignRotated((pool_h, pool_w), spatial_scale,
                                   sampling_ratio)
        if torch.__version__ == 'parrots':
            gradcheck(
                froipool, (x, rois), no_grads=[rois], delta=1e-5, pt_atol=1e-5)
        else:
            gradcheck(froipool, (x, rois), eps=1e-5, atol=1e-5)


def _test_roialign_rotated_allclose(device, dtype):
    try:
        from mmcv.ops import RoIAlignRotated, roi_align_rotated
    except ModuleNotFoundError:
        pytest.skip('test requires compilation')
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2

    for case, output in zip(inputs, outputs):
        np_input = np.array(case[0])
        np_rois = np.array(case[1])
        np_output = np.array(output[0])
        np_grad = np.array(output[1])

        x = torch.tensor(
            np_input, dtype=dtype, device=device, requires_grad=True)
        rois = torch.tensor(np_rois, dtype=dtype, device=device)

        output = roi_align_rotated(x, rois, (pool_h, pool_w), spatial_scale,
                                   sampling_ratio, True)
        output.backward(torch.ones_like(output))
        assert np.allclose(
            output.data.type(torch.float).cpu().numpy(), np_output, atol=1e-3)
        assert np.allclose(
            x.grad.data.type(torch.float).cpu().numpy(), np_grad, atol=1e-3)

    # Test deprecated parameters
    roi_align_rotated_module_deprecated = RoIAlignRotated(
        out_size=(pool_h, pool_w),
        spatial_scale=spatial_scale,
        sample_num=sampling_ratio)

    output_1 = roi_align_rotated_module_deprecated(x, rois)

    roi_align_rotated_module_new = RoIAlignRotated(
        output_size=(pool_h, pool_w),
        spatial_scale=spatial_scale,
        sampling_ratio=sampling_ratio)

    output_2 = roi_align_rotated_module_new(x, rois)

    assert np.allclose(
        output_1.data.type(torch.float).cpu().numpy(),
        output_2.data.type(torch.float).cpu().numpy())


@pytest.mark.parametrize('device', [
    'cpu',
    pytest.param(
        'cuda',
        marks=pytest.mark.skipif(
            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    pytest.param(
        'mlu',
        marks=pytest.mark.skipif(
            not IS_MLU_AVAILABLE, reason='requires MLU support'))
])
@pytest.mark.parametrize('dtype', [
    torch.float,
    pytest.param(
        torch.double,
        marks=pytest.mark.skipif(
            IS_MLU_AVAILABLE,
            reason='MLU does not support for 64-bit floating point')),
    torch.half
])
def test_roialign_rotated(device, dtype):
    # check double only
    if dtype is torch.double:
        _test_roialign_rotated_gradcheck(device=device, dtype=dtype)
    _test_roialign_rotated_allclose(device=device, dtype=dtype)