File size: 6,647 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch


class TestBoxIoURotated:

    def test_box_iou_rotated_cpu(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.3708, 0.4351, 0.0000], [0.1104, 0.4487, 0.0424],
             [0.0000, 0.0000, 0.3622]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.3708, 0.4487, 0.3622],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1)
        boxes2 = torch.from_numpy(np_boxes2)

        # test cw angle definition
        ious = box_iou_rotated(boxes1, boxes2)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, aligned=True)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)

        # test ccw angle definition
        boxes1[..., -1] *= -1
        boxes2[..., -1] *= -1
        ious = box_iou_rotated(boxes1, boxes2, clockwise=False)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, aligned=True, clockwise=False)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)

    @pytest.mark.skipif(
        not torch.cuda.is_available(), reason='requires CUDA support')
    def test_box_iou_rotated_cuda(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.3708, 0.4351, 0.0000], [0.1104, 0.4487, 0.0424],
             [0.0000, 0.0000, 0.3622]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.3708, 0.4487, 0.3622],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1).cuda()
        boxes2 = torch.from_numpy(np_boxes2).cuda()

        # test cw angle definition
        ious = box_iou_rotated(boxes1, boxes2)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, aligned=True)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)

        # test ccw angle definition
        boxes1[..., -1] *= -1
        boxes2[..., -1] *= -1
        ious = box_iou_rotated(boxes1, boxes2, clockwise=False)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, aligned=True, clockwise=False)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)

    def test_box_iou_rotated_iof_cpu(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.4959, 0.5306, 0.0000], [0.1823, 0.5420, 0.1832],
             [0.0000, 0.0000, 0.4404]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.4959, 0.5420, 0.4404],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1)
        boxes2 = torch.from_numpy(np_boxes2)

        # test cw angle definition
        ious = box_iou_rotated(boxes1, boxes2, mode='iof')
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
        ious = box_iou_rotated(boxes1, boxes2, mode='iof', aligned=True)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)

        # test ccw angle definition
        boxes1[..., -1] *= -1
        boxes2[..., -1] *= -1
        ious = box_iou_rotated(boxes1, boxes2, mode='iof', clockwise=False)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
        ious = box_iou_rotated(
            boxes1, boxes2, mode='iof', aligned=True, clockwise=False)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)

    @pytest.mark.skipif(
        not torch.cuda.is_available(), reason='requires CUDA support')
    def test_box_iou_rotated_iof_cuda(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.4959, 0.5306, 0.0000], [0.1823, 0.5420, 0.1832],
             [0.0000, 0.0000, 0.4404]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.4959, 0.5420, 0.4404],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1).cuda()
        boxes2 = torch.from_numpy(np_boxes2).cuda()

        # test cw angle definition
        ious = box_iou_rotated(boxes1, boxes2, mode='iof')
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, mode='iof', aligned=True)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)

        # test ccw angle definition
        boxes1[..., -1] *= -1
        boxes2[..., -1] *= -1
        ious = box_iou_rotated(boxes1, boxes2, mode='iof', clockwise=False)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(
            boxes1, boxes2, mode='iof', aligned=True, clockwise=False)
        assert np.allclose(
            ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)