Spaces:
Running
on
L40S
Running
on
L40S
File size: 17,854 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import cv2
import numpy as np
import pytest
from numpy.testing import assert_array_equal
import mmcv
class TestPhotometric:
@classmethod
def setup_class(cls):
# the test img resolution is 400x300
cls.img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
cls.img = cv2.imread(cls.img_path)
cls.mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
cls.std = np.array([58.395, 57.12, 57.375], dtype=np.float32)
def test_imnormalize(self):
rgb_img = self.img[:, :, ::-1]
baseline = (rgb_img - self.mean) / self.std
img = mmcv.imnormalize(self.img, self.mean, self.std)
assert np.allclose(img, baseline)
assert id(img) != id(self.img)
img = mmcv.imnormalize(rgb_img, self.mean, self.std, to_rgb=False)
assert np.allclose(img, baseline)
assert id(img) != id(rgb_img)
def test_imnormalize_(self):
img_for_normalize = np.float32(self.img)
rgb_img_for_normalize = np.float32(self.img[:, :, ::-1])
baseline = (rgb_img_for_normalize - self.mean) / self.std
img = mmcv.imnormalize_(img_for_normalize, self.mean, self.std)
assert np.allclose(img_for_normalize, baseline)
assert id(img) == id(img_for_normalize)
img = mmcv.imnormalize_(
rgb_img_for_normalize, self.mean, self.std, to_rgb=False)
assert np.allclose(img, baseline)
assert id(img) == id(rgb_img_for_normalize)
def test_imdenormalize(self):
norm_img = (self.img[:, :, ::-1] - self.mean) / self.std
rgb_baseline = (norm_img * self.std + self.mean)
bgr_baseline = rgb_baseline[:, :, ::-1]
img = mmcv.imdenormalize(norm_img, self.mean, self.std)
assert np.allclose(img, bgr_baseline)
img = mmcv.imdenormalize(norm_img, self.mean, self.std, to_bgr=False)
assert np.allclose(img, rgb_baseline)
def test_iminvert(self):
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img_r = np.array([[255, 127, 0], [254, 128, 1], [253, 126, 2]],
dtype=np.uint8)
assert_array_equal(mmcv.iminvert(img), img_r)
def test_solarize(self):
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img_r = np.array([[0, 127, 0], [1, 127, 1], [2, 126, 2]],
dtype=np.uint8)
assert_array_equal(mmcv.solarize(img), img_r)
img_r = np.array([[0, 127, 0], [1, 128, 1], [2, 126, 2]],
dtype=np.uint8)
assert_array_equal(mmcv.solarize(img, 100), img_r)
def test_posterize(self):
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img_r = np.array([[0, 128, 128], [0, 0, 128], [0, 128, 128]],
dtype=np.uint8)
assert_array_equal(mmcv.posterize(img, 1), img_r)
img_r = np.array([[0, 128, 224], [0, 96, 224], [0, 128, 224]],
dtype=np.uint8)
assert_array_equal(mmcv.posterize(img, 3), img_r)
def test_adjust_color(self):
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
assert_array_equal(mmcv.adjust_color(img), img)
img_gray = mmcv.bgr2gray(img)
img_r = np.stack([img_gray, img_gray, img_gray], axis=-1)
assert_array_equal(mmcv.adjust_color(img, 0), img_r)
assert_array_equal(mmcv.adjust_color(img, 0, 1), img_r)
assert_array_equal(
mmcv.adjust_color(img, 0.5, 0.5),
np.round(np.clip((img * 0.5 + img_r * 0.5), 0,
255)).astype(img.dtype))
assert_array_equal(
mmcv.adjust_color(img, 1, 1.5),
np.round(np.clip(img * 1 + img_r * 1.5, 0, 255)).astype(img.dtype))
assert_array_equal(
mmcv.adjust_color(img, 0.8, -0.6, gamma=2),
np.round(np.clip(img * 0.8 - 0.6 * img_r + 2, 0,
255)).astype(img.dtype))
assert_array_equal(
mmcv.adjust_color(img, 0.8, -0.6, gamma=-0.6),
np.round(np.clip(img * 0.8 - 0.6 * img_r - 0.6, 0,
255)).astype(img.dtype))
# test float type of image
img = img.astype(np.float32)
assert_array_equal(
np.round(mmcv.adjust_color(img, 0.8, -0.6, gamma=-0.6)),
np.round(np.clip(img * 0.8 - 0.6 * img_r - 0.6, 0, 255)))
def test_imequalize(self, nb_rand_test=100):
def _imequalize(img):
# equalize the image using PIL.ImageOps.equalize
from PIL import Image, ImageOps
img = Image.fromarray(img)
equalized_img = np.asarray(ImageOps.equalize(img))
return equalized_img
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
equalized_img = mmcv.imequalize(img)
assert_array_equal(equalized_img, _imequalize(img))
# test equalize with case step=0
img = np.array([[0, 0, 0], [120, 120, 120], [255, 255, 255]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
assert_array_equal(mmcv.imequalize(img), img)
# test equalize with randomly sampled image.
for _ in range(nb_rand_test):
img = np.clip(np.random.normal(0, 1, (256, 256, 3)) * 260, 0,
255).astype(np.uint8)
equalized_img = mmcv.imequalize(img)
assert_array_equal(equalized_img, _imequalize(img))
def test_adjust_brightness(self, nb_rand_test=100):
def _adjust_brightness(img, factor):
# adjust the brightness of image using
# PIL.ImageEnhance.Brightness
from PIL import Image
from PIL.ImageEnhance import Brightness
img = Image.fromarray(img)
brightened_img = Brightness(img).enhance(factor)
return np.asarray(brightened_img)
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
# test case with factor 1.0
assert_array_equal(mmcv.adjust_brightness(img, 1.), img)
# test case with factor 0.0
assert_array_equal(mmcv.adjust_brightness(img, 0.), np.zeros_like(img))
# test adjust_brightness with randomly sampled images and factors.
for _ in range(nb_rand_test):
img = np.clip(
np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0,
255).astype(np.uint8)
factor = np.random.uniform() + np.random.choice([0, 1])
np.testing.assert_allclose(
mmcv.adjust_brightness(img, factor).astype(np.int32),
_adjust_brightness(img, factor).astype(np.int32),
rtol=0,
atol=1)
def test_adjust_contrast(self, nb_rand_test=100):
def _adjust_contrast(img, factor):
from PIL import Image
from PIL.ImageEnhance import Contrast
# Image.fromarray defaultly supports RGB, not BGR.
# convert from BGR to RGB
img = Image.fromarray(img[..., ::-1], mode='RGB')
contrasted_img = Contrast(img).enhance(factor)
# convert from RGB to BGR
return np.asarray(contrasted_img)[..., ::-1]
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
# test case with factor 1.0
assert_array_equal(mmcv.adjust_contrast(img, 1.), img)
# test case with factor 0.0
assert_array_equal(
mmcv.adjust_contrast(img, 0.), _adjust_contrast(img, 0.))
# test adjust_contrast with randomly sampled images and factors.
for _ in range(nb_rand_test):
img = np.clip(
np.random.uniform(0, 1, (1200, 1000, 3)) * 260, 0,
255).astype(np.uint8)
factor = np.random.uniform() + np.random.choice([0, 1])
# Note the gap (less_equal 1) between PIL.ImageEnhance.Contrast
# and mmcv.adjust_contrast comes from the gap that converts from
# a color image to gray image using mmcv or PIL.
np.testing.assert_allclose(
mmcv.adjust_contrast(img, factor).astype(np.int32),
_adjust_contrast(img, factor).astype(np.int32),
rtol=0,
atol=1)
def test_auto_contrast(self, nb_rand_test=100):
def _auto_contrast(img, cutoff=0):
from PIL import Image
from PIL.ImageOps import autocontrast
# Image.fromarray defaultly supports RGB, not BGR.
# convert from BGR to RGB
img = Image.fromarray(img[..., ::-1], mode='RGB')
contrasted_img = autocontrast(img, cutoff)
# convert from RGB to BGR
return np.asarray(contrasted_img)[..., ::-1]
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
# test case without cut-off
assert_array_equal(mmcv.auto_contrast(img), _auto_contrast(img))
# test case with cut-off as int
assert_array_equal(
mmcv.auto_contrast(img, 10), _auto_contrast(img, 10))
# test case with cut-off as float
assert_array_equal(
mmcv.auto_contrast(img, 12.5), _auto_contrast(img, 12.5))
# test case with cut-off as tuple
assert_array_equal(
mmcv.auto_contrast(img, (10, 10)), _auto_contrast(img, 10))
# test case with cut-off with sum over 100
assert_array_equal(
mmcv.auto_contrast(img, 60), _auto_contrast(img, 60))
# test auto_contrast with randomly sampled images and factors.
for _ in range(nb_rand_test):
img = np.clip(
np.random.uniform(0, 1, (1200, 1000, 3)) * 260, 0,
255).astype(np.uint8)
# cut-offs are not set as tuple since in `build.yml`, pillow 6.2.2
# is installed, which does not support setting low cut-off and high
# cut-off differently.
# With pillow above 8.0.0, cutoff can be set as tuple
cutoff = np.random.rand() * 100
assert_array_equal(
mmcv.auto_contrast(img, cutoff), _auto_contrast(img, cutoff))
def test_adjust_sharpness(self, nb_rand_test=100):
def _adjust_sharpness(img, factor):
# adjust the sharpness of image using
# PIL.ImageEnhance.Sharpness
from PIL import Image
from PIL.ImageEnhance import Sharpness
img = Image.fromarray(img)
sharpened_img = Sharpness(img).enhance(factor)
return np.asarray(sharpened_img)
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
# test case with invalid type of kernel
with pytest.raises(AssertionError):
mmcv.adjust_sharpness(img, 1., kernel=1.)
# test case with invalid shape of kernel
kernel = np.ones((3, 3, 3))
with pytest.raises(AssertionError):
mmcv.adjust_sharpness(img, 1., kernel=kernel)
# test case with all-zero kernel, factor 0.0
kernel = np.zeros((3, 3))
assert_array_equal(
mmcv.adjust_sharpness(img, 0., kernel=kernel), np.zeros_like(img))
# test case with factor 1.0
assert_array_equal(mmcv.adjust_sharpness(img, 1.), img)
# test adjust_sharpness with randomly sampled images and factors.
for _ in range(nb_rand_test):
img = np.clip(
np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0,
255).astype(np.uint8)
factor = np.random.uniform()
# Note the gap between PIL.ImageEnhance.Sharpness and
# mmcv.adjust_sharpness mainly comes from the difference ways of
# handling img edges when applying filters
np.testing.assert_allclose(
mmcv.adjust_sharpness(img, factor).astype(np.int32)[1:-1,
1:-1],
_adjust_sharpness(img, factor).astype(np.int32)[1:-1, 1:-1],
rtol=0,
atol=1)
def test_adjust_lighting(self):
img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8)
img = np.stack([img, img, img], axis=-1)
# eigval and eigvec must be np.ndarray
with pytest.raises(AssertionError):
mmcv.adjust_lighting(img, 1, np.ones((3, 1)))
with pytest.raises(AssertionError):
mmcv.adjust_lighting(img, np.array([1]), (1, 1, 1))
# we must have the same number of eigval and eigvec
with pytest.raises(AssertionError):
mmcv.adjust_lighting(img, np.array([1]), np.eye(2))
with pytest.raises(AssertionError):
mmcv.adjust_lighting(img, np.array([1]), np.array([1]))
img_adjusted = mmcv.adjust_lighting(
img,
np.random.normal(0, 1, 2),
np.random.normal(0, 1, (3, 2)),
alphastd=0.)
assert_array_equal(img_adjusted, img)
def test_lut_transform(self):
lut_table = np.array(list(range(256)))
# test assertion image values should between 0 and 255.
with pytest.raises(AssertionError):
mmcv.lut_transform(np.array([256]), lut_table)
with pytest.raises(AssertionError):
mmcv.lut_transform(np.array([-1]), lut_table)
# test assertion lut_table should be ndarray with shape (256, )
with pytest.raises(AssertionError):
mmcv.lut_transform(np.array([0]), list(range(256)))
with pytest.raises(AssertionError):
mmcv.lut_transform(np.array([1]), np.array(list(range(257))))
img = mmcv.lut_transform(self.img, lut_table)
baseline = cv2.LUT(self.img, lut_table)
assert np.allclose(img, baseline)
input_img = np.array(
[[[0, 128, 255], [255, 128, 0]], [[0, 128, 255], [255, 128, 0]]],
dtype=float)
img = mmcv.lut_transform(input_img, lut_table)
baseline = cv2.LUT(np.array(input_img, dtype=np.uint8), lut_table)
assert np.allclose(img, baseline)
input_img = np.random.randint(0, 256, size=(7, 8, 9, 10, 11))
img = mmcv.lut_transform(input_img, lut_table)
baseline = cv2.LUT(np.array(input_img, dtype=np.uint8), lut_table)
assert np.allclose(img, baseline)
def test_clahe(self):
def _clahe(img, clip_limit=40.0, tile_grid_size=(8, 8)):
clahe = cv2.createCLAHE(clip_limit, tile_grid_size)
return clahe.apply(np.array(img, dtype=np.uint8))
# test assertion image should have the right shape
with pytest.raises(AssertionError):
mmcv.clahe(self.img)
# test assertion tile_grid_size should be a tuple with 2 integers
with pytest.raises(AssertionError):
mmcv.clahe(self.img[:, :, 0], tile_grid_size=(8.0, 8.0))
with pytest.raises(AssertionError):
mmcv.clahe(self.img[:, :, 0], tile_grid_size=(8, 8, 8))
with pytest.raises(AssertionError):
mmcv.clahe(self.img[:, :, 0], tile_grid_size=[8, 8])
# test with different channels
for i in range(self.img.shape[-1]):
img = mmcv.clahe(self.img[:, :, i])
img_std = _clahe(self.img[:, :, i])
assert np.allclose(img, img_std)
assert id(img) != id(self.img[:, :, i])
assert id(img_std) != id(self.img[:, :, i])
# test case with clip_limit=1.2
for i in range(self.img.shape[-1]):
img = mmcv.clahe(self.img[:, :, i], 1.2)
img_std = _clahe(self.img[:, :, i], 1.2)
assert np.allclose(img, img_std)
assert id(img) != id(self.img[:, :, i])
assert id(img_std) != id(self.img[:, :, i])
def test_adjust_hue(self):
from PIL import Image
def _adjust_hue(img, hue_factor):
input_mode = img.mode
if input_mode in {'L', '1', 'I', 'F'}:
return img
h, s, v = img.convert('HSV').split()
np_h = np.array(h, dtype=np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over='ignore'):
np_h += np.uint8(hue_factor * 255)
h = Image.fromarray(np_h, 'L')
img = Image.merge('HSV', (h, s, v)).convert(input_mode)
return img
pil_img = Image.fromarray(self.img)
# test case with img is not ndarray
with pytest.raises(TypeError):
mmcv.adjust_hue(pil_img, hue_factor=0.0)
# test case with hue_factor > 0.5 or hue_factor < -0.5
with pytest.raises(ValueError):
mmcv.adjust_hue(self.img, hue_factor=-0.6)
with pytest.raises(ValueError):
mmcv.adjust_hue(self.img, hue_factor=0.6)
for i in np.arange(-0.5, 0.5, 0.2):
pil_res = _adjust_hue(pil_img, hue_factor=i)
pil_res = np.array(pil_res)
cv2_res = mmcv.adjust_hue(self.img, hue_factor=i)
assert np.allclose(pil_res, cv2_res, atol=10.0)
|