Spaces:
Running
on
L40S
Running
on
L40S
File size: 7,686 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from unittest.mock import patch
import pytest
import torch
import torch.nn as nn
from mmcv.cnn.bricks import CONV_LAYERS, ConvModule, HSigmoid, HSwish
from mmcv.utils import TORCH_VERSION, digit_version
@CONV_LAYERS.register_module()
class ExampleConv(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
norm_cfg=None):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.bias = bias
self.norm_cfg = norm_cfg
self.output_padding = (0, 0, 0)
self.transposed = False
self.conv0 = nn.Conv2d(in_channels, out_channels, kernel_size)
self.init_weights()
def forward(self, x):
x = self.conv0(x)
return x
def init_weights(self):
nn.init.constant_(self.conv0.weight, 0)
def test_conv_module():
with pytest.raises(AssertionError):
# conv_cfg must be a dict or None
conv_cfg = 'conv'
ConvModule(3, 8, 2, conv_cfg=conv_cfg)
with pytest.raises(AssertionError):
# norm_cfg must be a dict or None
norm_cfg = 'norm'
ConvModule(3, 8, 2, norm_cfg=norm_cfg)
with pytest.raises(KeyError):
# softmax is not supported
act_cfg = dict(type='softmax')
ConvModule(3, 8, 2, act_cfg=act_cfg)
# conv + norm + act
conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
assert conv.with_activation
assert hasattr(conv, 'activate')
assert conv.with_norm
assert hasattr(conv, 'norm')
x = torch.rand(1, 3, 256, 256)
output = conv(x)
assert output.shape == (1, 8, 255, 255)
# conv + act
conv = ConvModule(3, 8, 2)
assert conv.with_activation
assert hasattr(conv, 'activate')
assert not conv.with_norm
assert conv.norm is None
x = torch.rand(1, 3, 256, 256)
output = conv(x)
assert output.shape == (1, 8, 255, 255)
# conv
conv = ConvModule(3, 8, 2, act_cfg=None)
assert not conv.with_norm
assert conv.norm is None
assert not conv.with_activation
assert not hasattr(conv, 'activate')
x = torch.rand(1, 3, 256, 256)
output = conv(x)
assert output.shape == (1, 8, 255, 255)
# conv with its own `init_weights` method
conv_module = ConvModule(
3, 8, 2, conv_cfg=dict(type='ExampleConv'), act_cfg=None)
assert torch.equal(conv_module.conv.conv0.weight, torch.zeros(8, 3, 2, 2))
# with_spectral_norm=True
conv = ConvModule(3, 8, 3, padding=1, with_spectral_norm=True)
assert hasattr(conv.conv, 'weight_orig')
output = conv(x)
assert output.shape == (1, 8, 256, 256)
# padding_mode='reflect'
conv = ConvModule(3, 8, 3, padding=1, padding_mode='reflect')
assert isinstance(conv.padding_layer, nn.ReflectionPad2d)
output = conv(x)
assert output.shape == (1, 8, 256, 256)
# non-existing padding mode
with pytest.raises(KeyError):
conv = ConvModule(3, 8, 3, padding=1, padding_mode='non_exists')
# leaky relu
conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='LeakyReLU'))
assert isinstance(conv.activate, nn.LeakyReLU)
output = conv(x)
assert output.shape == (1, 8, 256, 256)
# tanh
conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='Tanh'))
assert isinstance(conv.activate, nn.Tanh)
output = conv(x)
assert output.shape == (1, 8, 256, 256)
# Sigmoid
conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='Sigmoid'))
assert isinstance(conv.activate, nn.Sigmoid)
output = conv(x)
assert output.shape == (1, 8, 256, 256)
# PReLU
conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='PReLU'))
assert isinstance(conv.activate, nn.PReLU)
output = conv(x)
assert output.shape == (1, 8, 256, 256)
# HSwish
conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='HSwish'))
if (TORCH_VERSION == 'parrots'
or digit_version(TORCH_VERSION) < digit_version('1.7')):
assert isinstance(conv.activate, HSwish)
else:
assert isinstance(conv.activate, nn.Hardswish)
output = conv(x)
assert output.shape == (1, 8, 256, 256)
# HSigmoid
conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='HSigmoid'))
assert isinstance(conv.activate, HSigmoid)
output = conv(x)
assert output.shape == (1, 8, 256, 256)
def test_bias():
# bias: auto, without norm
conv = ConvModule(3, 8, 2)
assert conv.conv.bias is not None
# bias: auto, with norm
conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
assert conv.conv.bias is None
# bias: False, without norm
conv = ConvModule(3, 8, 2, bias=False)
assert conv.conv.bias is None
# bias: True, with batch norm
with pytest.warns(UserWarning) as record:
ConvModule(3, 8, 2, bias=True, norm_cfg=dict(type='BN'))
assert len(record) == 1
assert record[0].message.args[
0] == 'Unnecessary conv bias before batch/instance norm'
# bias: True, with instance norm
with pytest.warns(UserWarning) as record:
ConvModule(3, 8, 2, bias=True, norm_cfg=dict(type='IN'))
assert len(record) == 1
assert record[0].message.args[
0] == 'Unnecessary conv bias before batch/instance norm'
# bias: True, with other norm
with pytest.warns(UserWarning) as record:
norm_cfg = dict(type='GN', num_groups=1)
ConvModule(3, 8, 2, bias=True, norm_cfg=norm_cfg)
warnings.warn('No warnings')
assert len(record) == 1
assert record[0].message.args[0] == 'No warnings'
def conv_forward(self, x):
return x + '_conv'
def bn_forward(self, x):
return x + '_bn'
def relu_forward(self, x):
return x + '_relu'
@patch('torch.nn.ReLU.forward', relu_forward)
@patch('torch.nn.BatchNorm2d.forward', bn_forward)
@patch('torch.nn.Conv2d.forward', conv_forward)
def test_order():
with pytest.raises(AssertionError):
# order must be a tuple
order = ['conv', 'norm', 'act']
ConvModule(3, 8, 2, order=order)
with pytest.raises(AssertionError):
# length of order must be 3
order = ('conv', 'norm')
ConvModule(3, 8, 2, order=order)
with pytest.raises(AssertionError):
# order must be an order of 'conv', 'norm', 'act'
order = ('conv', 'norm', 'norm')
ConvModule(3, 8, 2, order=order)
with pytest.raises(AssertionError):
# order must be an order of 'conv', 'norm', 'act'
order = ('conv', 'norm', 'something')
ConvModule(3, 8, 2, order=order)
# ('conv', 'norm', 'act')
conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
out = conv('input')
assert out == 'input_conv_bn_relu'
# ('norm', 'conv', 'act')
conv = ConvModule(
3, 8, 2, norm_cfg=dict(type='BN'), order=('norm', 'conv', 'act'))
out = conv('input')
assert out == 'input_bn_conv_relu'
# ('conv', 'norm', 'act'), activate=False
conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
out = conv('input', activate=False)
assert out == 'input_conv_bn'
# ('conv', 'norm', 'act'), activate=False
conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
out = conv('input', norm=False)
assert out == 'input_conv_relu'
|