Spaces:
Sleeping
Sleeping
File size: 18,392 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import glob
import os
import platform
import re
import warnings
from pkg_resources import DistributionNotFound, get_distribution
from setuptools import find_packages, setup
EXT_TYPE = ''
try:
import torch
if torch.__version__ == 'parrots':
from parrots.utils.build_extension import BuildExtension
EXT_TYPE = 'parrots'
elif (hasattr(torch, 'is_mlu_available') and torch.is_mlu_available()) or \
os.getenv('FORCE_MLU', '0') == '1':
from torch_mlu.utils.cpp_extension import BuildExtension
EXT_TYPE = 'pytorch'
else:
from torch.utils.cpp_extension import BuildExtension
EXT_TYPE = 'pytorch'
cmd_class = {'build_ext': BuildExtension}
except ModuleNotFoundError:
cmd_class = {}
print('Skip building ext ops due to the absence of torch.')
def choose_requirement(primary, secondary):
"""If some version of primary requirement installed, return primary, else
return secondary."""
try:
name = re.split(r'[!<>=]', primary)[0]
get_distribution(name)
except DistributionNotFound:
return secondary
return str(primary)
def get_version():
version_file = 'mmcv/version.py'
with open(version_file, encoding='utf-8') as f:
exec(compile(f.read(), version_file, 'exec'))
return locals()['__version__']
def parse_requirements(fname='requirements/runtime.txt', with_version=True):
"""Parse the package dependencies listed in a requirements file but strips
specific versioning information.
Args:
fname (str): path to requirements file
with_version (bool, default=False): if True include version specs
Returns:
List[str]: list of requirements items
CommandLine:
python -c "import setup; print(setup.parse_requirements())"
"""
import sys
from os.path import exists
require_fpath = fname
def parse_line(line):
"""Parse information from a line in a requirements text file."""
if line.startswith('-r '):
# Allow specifying requirements in other files
target = line.split(' ')[1]
for info in parse_require_file(target):
yield info
else:
info = {'line': line}
if line.startswith('-e '):
info['package'] = line.split('#egg=')[1]
else:
# Remove versioning from the package
pat = '(' + '|'.join(['>=', '==', '>']) + ')'
parts = re.split(pat, line, maxsplit=1)
parts = [p.strip() for p in parts]
info['package'] = parts[0]
if len(parts) > 1:
op, rest = parts[1:]
if ';' in rest:
# Handle platform specific dependencies
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
version, platform_deps = map(str.strip,
rest.split(';'))
info['platform_deps'] = platform_deps
else:
version = rest # NOQA
info['version'] = (op, version)
yield info
def parse_require_file(fpath):
with open(fpath) as f:
for line in f.readlines():
line = line.strip()
if line and not line.startswith('#'):
yield from parse_line(line)
def gen_packages_items():
if exists(require_fpath):
for info in parse_require_file(require_fpath):
parts = [info['package']]
if with_version and 'version' in info:
parts.extend(info['version'])
if not sys.version.startswith('3.4'):
# apparently package_deps are broken in 3.4
platform_deps = info.get('platform_deps')
if platform_deps is not None:
parts.append(';' + platform_deps)
item = ''.join(parts)
yield item
packages = list(gen_packages_items())
return packages
install_requires = parse_requirements()
try:
# OpenCV installed via conda.
import cv2 # NOQA: F401
major, minor, *rest = cv2.__version__.split('.')
if int(major) < 3:
raise RuntimeError(
f'OpenCV >=3 is required but {cv2.__version__} is installed')
except ImportError:
# If first not installed install second package
CHOOSE_INSTALL_REQUIRES = [('opencv-python-headless>=3',
'opencv-python>=3')]
for main, secondary in CHOOSE_INSTALL_REQUIRES:
install_requires.append(choose_requirement(main, secondary))
def get_extensions():
extensions = []
if os.getenv('MMCV_WITH_TRT', '0') != '0':
# Following strings of text style are from colorama package
bright_style, reset_style = '\x1b[1m', '\x1b[0m'
red_text, blue_text = '\x1b[31m', '\x1b[34m'
white_background = '\x1b[107m'
msg = white_background + bright_style + red_text
msg += 'DeprecationWarning: ' + \
'Custom TensorRT Ops will be deprecated in future. '
msg += blue_text + \
'Welcome to use the unified model deployment toolbox '
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
msg += reset_style
warnings.warn(msg)
ext_name = 'mmcv._ext_trt'
from torch.utils.cpp_extension import include_paths, library_paths
library_dirs = []
libraries = []
include_dirs = []
tensorrt_path = os.getenv('TENSORRT_DIR', '0')
tensorrt_lib_path = glob.glob(
os.path.join(tensorrt_path, 'targets', '*', 'lib'))[0]
library_dirs += [tensorrt_lib_path]
libraries += ['nvinfer', 'nvparsers', 'nvinfer_plugin']
libraries += ['cudart']
define_macros = []
extra_compile_args = {'cxx': []}
include_path = os.path.abspath('./mmcv/ops/csrc/common/cuda')
include_trt_path = os.path.abspath('./mmcv/ops/csrc/tensorrt')
include_dirs.append(include_path)
include_dirs.append(include_trt_path)
include_dirs.append(os.path.join(tensorrt_path, 'include'))
include_dirs += include_paths(cuda=True)
op_files = glob.glob('./mmcv/ops/csrc/tensorrt/plugins/*')
define_macros += [('MMCV_WITH_CUDA', None)]
define_macros += [('MMCV_WITH_TRT', None)]
cuda_args = os.getenv('MMCV_CUDA_ARGS')
extra_compile_args['nvcc'] = [cuda_args] if cuda_args else []
# prevent cub/thrust conflict with other python library
# More context See issues #1454
extra_compile_args['nvcc'] += ['-Xcompiler=-fno-gnu-unique']
library_dirs += library_paths(cuda=True)
from setuptools import Extension
ext_ops = Extension(
name=ext_name,
sources=op_files,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
language='c++',
library_dirs=library_dirs,
libraries=libraries)
extensions.append(ext_ops)
if os.getenv('MMCV_WITH_OPS', '0') == '0':
return extensions
if EXT_TYPE == 'parrots':
ext_name = 'mmcv._ext'
from parrots.utils.build_extension import Extension
# new parrots op impl do not use MMCV_USE_PARROTS
# define_macros = [('MMCV_USE_PARROTS', None)]
define_macros = []
include_dirs = []
op_files = glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') +\
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') +\
glob.glob('./mmcv/ops/csrc/parrots/*.cpp')
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda'))
cuda_args = os.getenv('MMCV_CUDA_ARGS')
extra_compile_args = {
'nvcc': [cuda_args, '-std=c++14'] if cuda_args else ['-std=c++14'],
'cxx': ['-std=c++14'],
}
if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1':
define_macros += [('MMCV_WITH_CUDA', None)]
extra_compile_args['nvcc'] += [
'-D__CUDA_NO_HALF_OPERATORS__',
'-D__CUDA_NO_HALF_CONVERSIONS__',
'-D__CUDA_NO_HALF2_OPERATORS__',
]
ext_ops = Extension(
name=ext_name,
sources=op_files,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
cuda=True,
pytorch=True)
extensions.append(ext_ops)
elif EXT_TYPE == 'pytorch':
ext_name = 'mmcv._ext'
from torch.utils.cpp_extension import CppExtension, CUDAExtension
# prevent ninja from using too many resources
try:
import psutil
num_cpu = len(psutil.Process().cpu_affinity())
cpu_use = max(4, num_cpu - 1)
except (ModuleNotFoundError, AttributeError):
cpu_use = 4
os.environ.setdefault('MAX_JOBS', str(cpu_use))
define_macros = []
# Before PyTorch1.8.0, when compiling CUDA code, `cxx` is a
# required key passed to PyTorch. Even if there is no flag passed
# to cxx, users also need to pass an empty list to PyTorch.
# Since PyTorch1.8.0, it has a default value so users do not need
# to pass an empty list anymore.
# More details at https://github.com/pytorch/pytorch/pull/45956
extra_compile_args = {'cxx': []}
# Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses
# c++14 features, the argument ['std=c++14'] must be added here.
# However, in the windows environment, some standard libraries
# will depend on c++17 or higher. In fact, for the windows
# environment, the compiler will choose the appropriate compiler
# to compile those cpp files, so there is no need to add the
# argument
if platform.system() != 'Windows':
extra_compile_args['cxx'] = ['-std=c++14']
include_dirs = []
is_rocm_pytorch = False
try:
from torch.utils.cpp_extension import ROCM_HOME
is_rocm_pytorch = True if ((torch.version.hip is not None) and
(ROCM_HOME is not None)) else False
except ImportError:
pass
if is_rocm_pytorch or torch.cuda.is_available() or os.getenv(
'FORCE_CUDA', '0') == '1':
if is_rocm_pytorch:
define_macros += [('HIP_DIFF', None)]
define_macros += [('MMCV_WITH_CUDA', None)]
cuda_args = os.getenv('MMCV_CUDA_ARGS')
extra_compile_args['nvcc'] = [cuda_args] if cuda_args else []
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') + \
glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cpp')
extension = CUDAExtension
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda'))
elif (hasattr(torch, 'is_mlu_available') and
torch.is_mlu_available()) or \
os.getenv('FORCE_MLU', '0') == '1':
from torch_mlu.utils.cpp_extension import MLUExtension
define_macros += [('MMCV_WITH_MLU', None)]
mlu_args = os.getenv('MMCV_MLU_ARGS')
extra_compile_args['cncc'] = [mlu_args] if mlu_args else []
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/mlu/*.cpp') + \
glob.glob('./mmcv/ops/csrc/common/mlu/*.mlu')
extension = MLUExtension
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/mlu'))
elif (hasattr(torch.backends, 'mps')
and torch.backends.mps.is_available()) or os.getenv(
'FORCE_MPS', '0') == '1':
# objc compiler support
from distutils.unixccompiler import UnixCCompiler
if '.mm' not in UnixCCompiler.src_extensions:
UnixCCompiler.src_extensions.append('.mm')
UnixCCompiler.language_map['.mm'] = 'objc'
define_macros += [('MMCV_WITH_MPS', None)]
extra_compile_args = {}
extra_compile_args['cxx'] = ['-Wall', '-std=c++17']
extra_compile_args['cxx'] += [
'-framework', 'Metal', '-framework', 'Foundation'
]
extra_compile_args['cxx'] += ['-ObjC++']
# src
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
glob.glob('./mmcv/ops/csrc/common/mps/*.mm') + \
glob.glob('./mmcv/ops/csrc/pytorch/mps/*.mm')
extension = CppExtension
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/mps'))
else:
print(f'Compiling {ext_name} only with CPU')
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp')
extension = CppExtension
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
# Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses
# c++14 features, the argument ['std=c++14'] must be added here.
# However, in the windows environment, some standard libraries
# will depend on c++17 or higher. In fact, for the windows
# environment, the compiler will choose the appropriate compiler
# to compile those cpp files, so there is no need to add the
# argument
if 'nvcc' in extra_compile_args and platform.system() != 'Windows':
extra_compile_args['nvcc'] += ['-std=c++14']
ext_ops = extension(
name=ext_name,
sources=op_files,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args)
extensions.append(ext_ops)
if EXT_TYPE == 'pytorch' and os.getenv('MMCV_WITH_ORT', '0') != '0':
# Following strings of text style are from colorama package
bright_style, reset_style = '\x1b[1m', '\x1b[0m'
red_text, blue_text = '\x1b[31m', '\x1b[34m'
white_background = '\x1b[107m'
msg = white_background + bright_style + red_text
msg += 'DeprecationWarning: ' + \
'Custom ONNXRuntime Ops will be deprecated in future. '
msg += blue_text + \
'Welcome to use the unified model deployment toolbox '
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
msg += reset_style
warnings.warn(msg)
ext_name = 'mmcv._ext_ort'
import onnxruntime
from torch.utils.cpp_extension import include_paths, library_paths
library_dirs = []
libraries = []
include_dirs = []
ort_path = os.getenv('ONNXRUNTIME_DIR', '0')
library_dirs += [os.path.join(ort_path, 'lib')]
libraries.append('onnxruntime')
define_macros = []
extra_compile_args = {'cxx': []}
include_path = os.path.abspath('./mmcv/ops/csrc/onnxruntime')
include_dirs.append(include_path)
include_dirs.append(os.path.join(ort_path, 'include'))
op_files = glob.glob('./mmcv/ops/csrc/onnxruntime/cpu/*')
if onnxruntime.get_device() == 'GPU' or os.getenv('FORCE_CUDA',
'0') == '1':
define_macros += [('MMCV_WITH_CUDA', None)]
cuda_args = os.getenv('MMCV_CUDA_ARGS')
extra_compile_args['nvcc'] = [cuda_args] if cuda_args else []
op_files += glob.glob('./mmcv/ops/csrc/onnxruntime/gpu/*')
include_dirs += include_paths(cuda=True)
library_dirs += library_paths(cuda=True)
else:
include_dirs += include_paths(cuda=False)
library_dirs += library_paths(cuda=False)
from setuptools import Extension
ext_ops = Extension(
name=ext_name,
sources=op_files,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
language='c++',
library_dirs=library_dirs,
libraries=libraries)
extensions.append(ext_ops)
return extensions
setup(
name='mmcv' if os.getenv('MMCV_WITH_OPS', '0') == '0' else 'mmcv-full',
version=get_version(),
description='OpenMMLab Computer Vision Foundation',
keywords='computer vision',
packages=find_packages(),
include_package_data=True,
classifiers=[
'Development Status :: 4 - Beta',
'License :: OSI Approved :: Apache Software License',
'Operating System :: OS Independent',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Topic :: Utilities',
],
url='https://github.com/open-mmlab/mmcv',
author='MMCV Contributors',
author_email='[email protected]',
install_requires=install_requires,
extras_require={
'all': parse_requirements('requirements.txt'),
'tests': parse_requirements('requirements/test.txt'),
'build': parse_requirements('requirements/build.txt'),
'optional': parse_requirements('requirements/optional.txt'),
},
ext_modules=get_extensions(),
cmdclass=cmd_class,
zip_safe=False)
|