File size: 6,576 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch

from mmcv.ops import (RoIAwarePool3d, points_in_boxes_all, points_in_boxes_cpu,
                      points_in_boxes_part)


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_RoIAwarePool3d():
    roiaware_pool3d_max = RoIAwarePool3d(
        out_size=4, max_pts_per_voxel=128, mode='max')
    roiaware_pool3d_avg = RoIAwarePool3d(
        out_size=4, max_pts_per_voxel=128, mode='avg')
    rois = torch.tensor(
        [[1.0, 2.0, 3.0, 5.0, 4.0, 6.0, -0.3 - np.pi / 2],
         [-10.0, 23.0, 16.0, 20.0, 10.0, 20.0, -0.5 - np.pi / 2]],
        dtype=torch.float32).cuda(
        )  # boxes (m, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
        [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
         [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
         [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9],
         [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]],
        dtype=torch.float32).cuda()  # points (n, 3) in lidar coordinate
    pts_feature = pts.clone()

    pooled_features_max = roiaware_pool3d_max(
        rois=rois, pts=pts, pts_feature=pts_feature)
    assert pooled_features_max.shape == torch.Size([2, 4, 4, 4, 3])
    assert torch.allclose(pooled_features_max.sum(),
                          torch.tensor(51.100).cuda(), 1e-3)

    pooled_features_avg = roiaware_pool3d_avg(
        rois=rois, pts=pts, pts_feature=pts_feature)
    assert pooled_features_avg.shape == torch.Size([2, 4, 4, 4, 3])
    assert torch.allclose(pooled_features_avg.sum(),
                          torch.tensor(49.750).cuda(), 1e-3)


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_points_in_boxes_part():
    boxes = torch.tensor(
        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3]],
         [[-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
        dtype=torch.float32).cuda(
        )  # boxes (b, t, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
          [4.7, 3.5, -12.2]],
         [[3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9], [-21.3, -52, -5],
          [0, 0, 0], [6, 7, 8], [-2, -3, -4], [6, 4, 9]]],
        dtype=torch.float32).cuda()  # points (b, m, 3) in lidar coordinate

    point_indices = points_in_boxes_part(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[0, 0, 0, 0, 0, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([2, 8])
    assert (point_indices == expected_point_indices).all()

    boxes = torch.tensor([[[0.0, 0.0, 0.0, 1.0, 20.0, 1.0, 0.523598]]],
                         dtype=torch.float32).cuda()  # 30 degrees
    pts = torch.tensor(
        [[[4, 6.928, 0], [6.928, 4, 0], [4, -6.928, 0], [6.928, -4, 0],
          [-4, 6.928, 0], [-6.928, 4, 0], [-4, -6.928, 0], [-6.928, -4, 0]]],
        dtype=torch.float32).cuda()
    point_indices = points_in_boxes_part(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor([[-1, -1, 0, -1, 0, -1, -1, -1]],
                                          dtype=torch.int32).cuda()
    assert (point_indices == expected_point_indices).all()


def test_points_in_boxes_cpu():
    boxes = torch.tensor(
        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
          [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
        dtype=torch.float32
    )  # boxes (m, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
          [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [
              -16, -18, 9
          ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]],
        dtype=torch.float32)  # points (n, 3) in lidar coordinate

    point_indices = points_in_boxes_cpu(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0],
          [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]],
        dtype=torch.int32)
    assert point_indices.shape == torch.Size([1, 15, 2])
    assert (point_indices == expected_point_indices).all()

    boxes = torch.tensor([[[0.0, 0.0, 0.0, 1.0, 20.0, 1.0, 0.523598]]],
                         dtype=torch.float32)  # 30 degrees
    pts = torch.tensor(
        [[[4, 6.928, 0], [6.928, 4, 0], [4, -6.928, 0], [6.928, -4, 0],
          [-4, 6.928, 0], [-6.928, 4, 0], [-4, -6.928, 0], [-6.928, -4, 0]]],
        dtype=torch.float32)
    point_indices = points_in_boxes_cpu(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[[0], [0], [1], [0], [1], [0], [0], [0]]], dtype=torch.int32)
    assert (point_indices == expected_point_indices).all()


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_points_in_boxes_all():

    boxes = torch.tensor(
        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
          [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
        dtype=torch.float32).cuda(
        )  # boxes (m, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
          [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [
              -16, -18, 9
          ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]],
        dtype=torch.float32).cuda()  # points (n, 3) in lidar coordinate

    point_indices = points_in_boxes_all(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0],
          [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([1, 15, 2])
    assert (point_indices == expected_point_indices).all()

    if torch.cuda.device_count() > 1:
        pts = pts.to('cuda:1')
        boxes = boxes.to('cuda:1')
        expected_point_indices = expected_point_indices.to('cuda:1')
        point_indices = points_in_boxes_all(points=pts, boxes=boxes)
        assert point_indices.shape == torch.Size([1, 15, 2])
        assert (point_indices == expected_point_indices).all()