File size: 1,923 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch

from mmcv.ops import diff_iou_rotated_2d, diff_iou_rotated_3d


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_diff_iou_rotated_2d():
    np_boxes1 = np.asarray([[[0.5, 0.5, 1., 1., .0], [0.5, 0.5, 1., 1., .0],
                             [0.5, 0.5, 1., 1., .0], [0.5, 0.5, 1., 1., .0],
                             [0.5, 0.5, 1., 1., .0]]],
                           dtype=np.float32)
    np_boxes2 = np.asarray(
        [[[0.5, 0.5, 1., 1., .0], [0.5, 0.5, 1., 1., np.pi / 2],
          [0.5, 0.5, 1., 1., np.pi / 4], [1., 1., 1., 1., .0],
          [1.5, 1.5, 1., 1., .0]]],
        dtype=np.float32)

    boxes1 = torch.from_numpy(np_boxes1).cuda()
    boxes2 = torch.from_numpy(np_boxes2).cuda()

    np_expect_ious = np.asarray([[1., 1., .7071, 1 / 7, .0]])
    ious = diff_iou_rotated_2d(boxes1, boxes2)
    assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_diff_iou_rotated_3d():
    np_boxes1 = np.asarray(
        [[[.5, .5, .5, 1., 1., 1., .0], [.5, .5, .5, 1., 1., 1., .0],
          [.5, .5, .5, 1., 1., 1., .0], [.5, .5, .5, 1., 1., 1., .0],
          [.5, .5, .5, 1., 1., 1., .0]]],
        dtype=np.float32)
    np_boxes2 = np.asarray(
        [[[.5, .5, .5, 1., 1., 1., .0], [.5, .5, .5, 1., 1., 2., np.pi / 2],
          [.5, .5, .5, 1., 1., 1., np.pi / 4], [1., 1., 1., 1., 1., 1., .0],
          [-1.5, -1.5, -1.5, 2.5, 2.5, 2.5, .0]]],
        dtype=np.float32)

    boxes1 = torch.from_numpy(np_boxes1).cuda()
    boxes2 = torch.from_numpy(np_boxes2).cuda()

    np_expect_ious = np.asarray([[1., .5, .7071, 1 / 15, .0]])
    ious = diff_iou_rotated_3d(boxes1, boxes2)
    assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)