Spaces:
Sleeping
Sleeping
File size: 15,122 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import os, sys
from util.get_param_dicts import get_param_dict
from util.logger import setup_logger
import numpy as np
import torch
import util.misc as utils
from detrsmpl.data.datasets import build_dataloader
from mmcv.parallel import MMDistributedDataParallel
from engine import evaluate, train_one_epoch, inference
from util.config import DictAction
from util.utils import ModelEma
import shutil
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
import config.config as cfg
from datasets.dataset import MultipleDatasets
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector',
add_help=False)
parser.add_argument('--config_file', '-c', type=str, required=True)
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file.')
# parser.add_argument('--exp_name', default='data/log/smplx_test', type=str)
# dataset parameters
# training parameters
parser.add_argument('--output_dir',
default='',
help='path where to save, empty for no saving')
parser.add_argument('--device',
default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--pretrain_model_path',
help='load from other checkpoint')
parser.add_argument('--finetune_ignore', type=str, nargs='+')
parser.add_argument('--start_epoch',
default=0,
type=int,
metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=0, type=int)
parser.add_argument('--test', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--find_unused_params', action='store_true')
parser.add_argument('--save_log', action='store_true')
parser.add_argument('--to_vid', action='store_true')
parser.add_argument('--inference', action='store_true')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--rank', default=0, type=int,
help='number of distributed processes')
parser.add_argument("--local_rank", default=0, type=int, help='local rank for DistributedDataParallel')
parser.add_argument('--amp', action='store_true',
help="Train with mixed precision")
parser.add_argument('--inference_input', default=None, type=str)
return parser
def build_model_main(args, cfg):
print(args.modelname)
from models.registry import MODULE_BUILD_FUNCS
assert args.modelname in MODULE_BUILD_FUNCS._module_dict
build_func = MODULE_BUILD_FUNCS.get(args.modelname)
model, criterion, postprocessors, postprocessors_aios = build_func(
args, cfg)
return model, criterion, postprocessors, postprocessors_aios
def main(args):
utils.init_distributed_mode(args)
print('Loading config file from {}'.format(args.config_file))
shutil.copy2(args.config_file,'config/aios_smplx.py')
from config.config import cfg
if args.options is not None:
cfg.merge_from_dict(args.options)
if args.rank == 0:
save_cfg_path = os.path.join(args.output_dir, 'config_cfg.py')
cfg.dump(save_cfg_path)
save_json_path = os.path.join(args.output_dir, 'config_args_raw.json')
with open(save_json_path, 'w') as f:
json.dump(vars(args), f, indent=2)
cfg_dict = cfg._cfg_dict.to_dict()
args_vars = vars(args)
for k, v in cfg_dict.items():
if k not in args_vars:
setattr(args, k, v)
else:
continue
raise ValueError('Key {} can used by args only'.format(k))
# update some new args temporally
if not getattr(args, 'use_ema', None):
args.use_ema = False
if not getattr(args, 'debug', None):
args.debug = False
# setup logger
os.makedirs(args.output_dir, exist_ok=True)
logger = setup_logger(output=os.path.join(args.output_dir, 'info.txt'),
distributed_rank=args.rank,
color=False,
name='detr')
logger.info('git:\n {}\n'.format(utils.get_sha()))
logger.info('Command: ' + ' '.join(sys.argv))
writer = None
if args.rank == 0:
writer = SummaryWriter(args.output_dir)
save_json_path = os.path.join(args.output_dir, 'config_args_all.json')
# print("args:", vars(args))
with open(save_json_path, 'w') as f:
json.dump(vars(args), f, indent=2)
logger.info('Full config saved to {}'.format(save_json_path))
logger.info('world size: {}'.format(args.world_size))
logger.info('rank: {}'.format(args.rank))
logger.info('local_rank: {}'.format(args.local_rank))
logger.info('args: ' + str(args) + '\n')
if args.frozen_weights is not None:
assert args.masks, 'Frozen training is meant for segmentation only'
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# build model
model, criterion, postprocessors, _ = build_model_main(
args, cfg)
wo_class_error = False
model.to(device)
# ema
if args.use_ema:
ema_m = ModelEma(model, args.ema_decay)
else:
ema_m = None
model_without_ddp = model
if args.distributed:
model = MMDistributedDataParallel(
model,
device_ids=[args.gpu],
find_unused_parameters=args.find_unused_params)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters()
if p.requires_grad)
logger.info('number of params:' + str(n_parameters))
logger.info('params:\n' + json.dumps(
{n: p.numel()
for n, p in model.named_parameters() if p.requires_grad},
indent=2))
param_dicts = get_param_dict(args, model_without_ddp)
optimizer = torch.optim.AdamW(param_dicts,
lr=args.lr,
weight_decay=args.weight_decay)
logger.info('Creating dataset...')
if not args.eval:
trainset= []
for trainset_i,v in cfg.trainset_partition.items():
exec('from datasets.' + trainset_i +
' import ' + trainset_i)
trainset.append(
eval(trainset_i)(transforms.ToTensor(), 'train'))
trainset_loader = MultipleDatasets(trainset, make_same_len=False,partition=cfg.trainset_partition)
data_loader_train = build_dataloader(
trainset_loader,
args.batch_size,
0 if 'workers_per_gpu' in args else 1,
dist=args.distributed)
exec('from datasets.' + cfg.testset +
' import ' + cfg.testset)
if not args.inference:
dataset_val = eval(cfg.testset)(transforms.ToTensor(), "test")
else:
dataset_val = eval(cfg.testset)(args.inference_input, args.output_dir)
data_loader_val = build_dataloader(
dataset_val,
args.batch_size,
0 if 'workers_per_gpu' in args else 2,
dist=args.distributed,
shuffle=False)
if args.onecyclelr:
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=args.lr,
steps_per_epoch=len(data_loader_train),
epochs=args.epochs,
pct_start=0.2)
elif args.multi_step_lr:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=args.lr_drop_list)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if os.path.exists(os.path.join(args.output_dir, 'checkpoint.pth')):
args.resume = os.path.join(args.output_dir, 'checkpoint.pth')
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(args.resume,
map_location='cpu',
check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if args.use_ema:
if 'ema_model' in checkpoint:
ema_m.module.load_state_dict(
utils.clean_state_dict(checkpoint['ema_model']))
else:
del ema_m
ema_m = ModelEma(model, args.ema_decay)
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if (not args.resume) and args.pretrain_model_path:
checkpoint = torch.load(args.pretrain_model_path,
map_location='cpu')['model']
from collections import OrderedDict
_ignorekeywordlist = args.finetune_ignore if args.finetune_ignore else []
ignorelist = []
def check_keep(keyname, ignorekeywordlist):
for keyword in ignorekeywordlist:
if keyword in keyname:
ignorelist.append(keyname)
return False
return True
_tmp_st = OrderedDict({
k: v
for k, v in utils.clean_state_dict(checkpoint).items()
if check_keep(k, _ignorekeywordlist)
})
logger.info('Ignore keys: {}'.format(json.dumps(ignorelist, indent=2)))
# Change This
_load_output = model_without_ddp.load_state_dict(_tmp_st, strict=False)
print('loading')
logger.info(str(_load_output))
if args.use_ema:
if 'ema_model' in checkpoint:
ema_m.module.load_state_dict(utils.clean_state_dict(checkpoint['ema_model']))
else:
del ema_m
ema_m = ModelEma(model, args.ema_decay)
_load_output = model_without_ddp.load_state_dict(_tmp_st, strict=False)
logger.info(str(_load_output))
if args.eval:
os.environ['EVAL_FLAG'] = 'TRUE'
if args.inference_input is not None and args.inference:
inference(model,
criterion,
postprocessors,
data_loader_val,
device,
args.output_dir,
wo_class_error=wo_class_error,
args=args)
else:
from config.config import cfg
cfg.result_dir=args.output_dir
cfg.exp_name=args.pretrain_model_path
evaluate(model,
criterion,
postprocessors,
data_loader_val,
device,
args.output_dir,
wo_class_error=wo_class_error,
args=args)
return
print('Start training')
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
epoch_start_time = time.time()
train_stats = train_one_epoch(
model,
criterion,
data_loader_train,
optimizer,
device,
epoch,
args.clip_max_norm,
wo_class_error=wo_class_error,
lr_scheduler=lr_scheduler,
args=args,
logger=(logger if args.save_log else None),
ema_m=ema_m,
tf_writer=writer)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
if not args.onecyclelr:
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (
epoch + 1) % args.save_checkpoint_interval == 0:
checkpoint_paths.append(output_dir /
f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
weights = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}
if args.use_ema:
weights.update({
'ema_model': ema_m.module.state_dict(),
})
utils.save_on_master(weights, checkpoint_path)
log_stats = {
**{f'train_{k}': v
for k, v in train_stats.items()},
}
ep_paras = {'epoch': epoch, 'n_parameters': n_parameters}
log_stats.update(ep_paras)
try:
log_stats.update({'now_time': str(datetime.datetime.now())})
except:
pass
epoch_time = time.time() - epoch_start_time
epoch_time_str = str(datetime.timedelta(seconds=int(epoch_time)))
log_stats['epoch_time'] = epoch_time_str
if args.output_dir and utils.is_main_process():
with (output_dir / 'log.txt').open('a') as f:
f.write(json.dumps(log_stats) + '\n')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DETR training and evaluation script',
parents=[get_args_parser()])
__spec__ = "ModuleSpec(name='builtins', loader=<class '_frozen_importlib.BuiltinImporter'>)"
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)
|