Spaces:
Sleeping
Sleeping
File size: 6,359 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
num_classes = 2
lr = 1e-04
param_dict_type = 'default'
lr_backbone = 1e-05
lr_backbone_names = ['backbone.0']
lr_linear_proj_names = ['reference_points', 'sampling_offsets']
lr_linear_proj_mult = 0.1
ddetr_lr_param = False
batch_size = 2
weight_decay = 0.0001
epochs = 200
lr_drop = 11
save_checkpoint_interval = 1
clip_max_norm = 0.1
onecyclelr = False
multi_step_lr = True
lr_drop_list = [30, 60]
modelname = 'aios_smplx'
frozen_weights = None
backbone = 'resnet50'
use_checkpoint = False
dilation = False
position_embedding = 'sine'
pe_temperatureH = 20
pe_temperatureW = 20
return_interm_indices = [1, 2, 3]
backbone_freeze_keywords = None
enc_layers = 6
dec_layers = 6
pre_norm = False
dim_feedforward = 2048
hidden_dim = 256
dropout = 0.0
nheads = 8
num_queries = 900
query_dim = 4
num_patterns = 0
random_refpoints_xy = False
fix_refpoints_hw = -1
dec_layer_number = None
num_feature_levels = 4
enc_n_points = 4
dec_n_points = 4
dln_xy_noise = 0.2
dln_hw_noise = 0.2
two_stage_type = 'standard'
two_stage_bbox_embed_share = False
two_stage_class_embed_share = False
two_stage_learn_wh = False
two_stage_default_hw = 0.05
two_stage_keep_all_tokens = False
rm_detach = None
num_select = 50
transformer_activation = 'relu'
batch_norm_type = 'FrozenBatchNorm2d'
masks = False
losses = ["smpl_pose", "smpl_beta", "smpl_expr",
"smpl_kp2d","smpl_kp3d","smpl_kp3d_ra",'labels', 'boxes', "keypoints"]
# losses = ['labels', 'boxes', "keypoints"]
aux_loss = True
set_cost_class = 2.0
set_cost_bbox = 5.0
set_cost_giou = 2.0
set_cost_keypoints = 10.0
set_cost_kpvis = 0.0
set_cost_oks = 4.0
cls_loss_coef = 2.0
# keypoints_loss_coef = 10.0
smpl_pose_loss_root_coef = 10 * 0.1
smpl_pose_loss_body_coef = 1 * 0.1
smpl_pose_loss_lhand_coef = 1 * 0.1
smpl_pose_loss_rhand_coef = 1 * 0.1
smpl_pose_loss_jaw_coef = 1 * 0.1
smpl_beta_loss_coef = 0.01
smpl_expr_loss_coef = 0.01
# smpl_kp3d_loss_coef = 10
smpl_body_kp3d_loss_coef = 10.0 * 0.1
smpl_face_kp3d_loss_coef = 1.0 * 0.1
smpl_lhand_kp3d_loss_coef = 1 * 0.1
smpl_rhand_kp3d_loss_coef = 1 * 0.1
# kp3d ra
smpl_body_kp3d_ra_loss_coef = 10 * 0.1
smpl_face_kp3d_ra_loss_coef = 1 * 0.1
smpl_lhand_kp3d_ra_loss_coef = 1 * 0.1
smpl_rhand_kp3d_ra_loss_coef = 1 * 0.1
# smpl_kp2d_ba_loss_coef = 1.0
smpl_body_kp2d_loss_coef = 10.0 * 0.1
smpl_lhand_kp2d_loss_coef = 5.0 * 0.1
smpl_rhand_kp2d_loss_coef = 5.0 * 0.1
smpl_face_kp2d_loss_coef = 1.0 * 0.1
smpl_body_kp2d_ba_loss_coef = 0 * 0.1
smpl_face_kp2d_ba_loss_coef = 0 * 0.1
smpl_lhand_kp2d_ba_loss_coef = 0 * 0.1
smpl_rhand_kp2d_ba_loss_coef = 0 * 0.1
bbox_loss_coef = 5.0
body_bbox_loss_coef = 5.0
lhand_bbox_loss_coef = 5.0
rhand_bbox_loss_coef = 5.0
face_bbox_loss_coef = 5.0
giou_loss_coef = 2.0
body_giou_loss_coef = 2.0
rhand_giou_loss_coef = 2.0
lhand_giou_loss_coef = 2.0
face_giou_loss_coef = 2.0
keypoints_loss_coef = 10.0
rhand_keypoints_loss_coef = 10.0
lhand_keypoints_loss_coef = 10.0
face_keypoints_loss_coef = 10.0
oks_loss_coef=4.0
rhand_oks_loss_coef = 0.5
lhand_oks_loss_coef = 0.5
face_oks_loss_coef = 4.0
enc_loss_coef = 1.0
interm_loss_coef = 1.0
no_interm_box_loss = False
focal_alpha = 0.25
rm_self_attn_layers = None
indices_idx_list = [1, 2, 3, 4, 5, 6, 7]
decoder_sa_type = 'sa'
matcher_type = 'HungarianMatcher'
decoder_module_seq = ['sa', 'ca', 'ffn']
nms_iou_threshold = -1
dec_pred_bbox_embed_share = False
dec_pred_class_embed_share = False
dec_pred_pose_embed_share = False
body_only = True
# for dn
use_dn = True
dn_number = 100
dn_box_noise_scale = 0.4
dn_label_noise_ratio = 0.5
embed_init_tgt = False
dn_label_coef = 0.3
dn_bbox_coef = 0.5
dn_batch_gt_fuse = False
dn_attn_mask_type_list = ['match2dn', 'dn2dn', 'group2group']
dn_labelbook_size = 100
match_unstable_error = False
# for ema
use_ema = True
ema_decay = 0.9997
ema_epoch = 0
cls_no_bias = False
num_body_points = 17 # for coco
num_hand_points = 6 # for coco
num_face_points = 6 # for coco
num_group = 100
num_box_decoder_layers = 2
num_hand_face_decoder_layers = 4
no_mmpose_keypoint_evaluator = True
strong_aug = False
body_model_test=\
dict(
type='smplx',
keypoint_src='smplx',
num_expression_coeffs=10,
num_betas=10,
keypoint_dst='smplx_137',
model_path='data/body_models/smplx',
use_pca=False,
use_face_contour=True)
body_model_train = \
dict(
type='smplx',
keypoint_src='smplx',
num_expression_coeffs=10,
num_betas=10,
keypoint_dst='smplx_137',
model_path='data/body_models/smplx',
use_pca=False,
use_face_contour=True)
# will be update in exp
exp_name = 'output/exp52/dataset_debug'
end_epoch = 150
train_batch_size = 32
scheduler = 'step'
step_size = 20
gamma = 0.1
# continue
continue_train = True
pretrained_model_path = '../output/train_gta_synbody_ft_20230410_132110/model_dump/snapshot_2.pth.tar'
# dataset setting
# dataset_list = ['AGORA_MM','BEDLAM', 'COCO_NA']
# trainset_3d = ['AGORA_MM','BEDLAM', 'COCO_NA']
dataset_list = ['AGORA_MM','BEDLAM', 'COCO_NA']
trainset_3d = ['AGORA_MM','BEDLAM', 'COCO_NA']
trainset_2d = []
trainset_partition = {
'AGORA_MM': 0.4,
'BEDLAM': 0.7,
'COCO_NA': 1,
# 'EgoBody_Egocentric': 1,
# 'EgoBody_Kinect': 1.0,
}
trainset_humandata = []
testset = 'INFERENCE_AGORA'
train_sizes=[480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
train_max_size=1333
test_sizes=[800]
test_max_size=1333
no_aug=False
# model
use_cache = True
## UBody setting
train_sample_interval = 10
test_sample_interval = 100
make_same_len = False
## input, output size
input_body_shape = (256, 192)
output_hm_shape = (16, 16, 12)
input_hand_shape = (256, 256)
output_hand_hm_shape = (16, 16, 16)
output_face_hm_shape = (8, 8, 8)
input_face_shape = (192, 192)
focal = (5000, 5000) # virtual focal lengths
princpt = (input_body_shape[1] / 2, input_body_shape[0] / 2
) # virtual principal point position
body_3d_size = 2
hand_3d_size = 0.3
face_3d_size = 0.3
camera_3d_size = 2.5
bbox_ratio = 1.2
## directory
output_dir, model_dir, vis_dir, log_dir, result_dir, code_dir = None, None, None, None, None, None
agora_benchmark = 'na' # 'agora_model', 'test_only'
# strategy
data_strategy = 'balance' # 'balance' need to define total_data_len
total_data_len = 'auto' |