Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,324 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import warnings
import hydra
import numpy as np
import torch
from nerf.dataset import get_nerf_datasets, trivial_collate
from nerf.eval_video_utils import generate_eval_video_cameras
from nerf.nerf_renderer import RadianceFieldRenderer
from nerf.stats import Stats
from omegaconf import DictConfig
from PIL import Image
CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs")
@hydra.main(config_path=CONFIG_DIR, config_name="lego")
def main(cfg: DictConfig):
# Device on which to run.
if torch.cuda.is_available():
device = "cuda"
else:
warnings.warn(
"Please note that although executing on CPU is supported,"
+ "the testing is unlikely to finish in reasonable time."
)
device = "cpu"
# Initialize the Radiance Field model.
model = RadianceFieldRenderer(
image_size=cfg.data.image_size,
n_pts_per_ray=cfg.raysampler.n_pts_per_ray,
n_pts_per_ray_fine=cfg.raysampler.n_pts_per_ray,
n_rays_per_image=cfg.raysampler.n_rays_per_image,
min_depth=cfg.raysampler.min_depth,
max_depth=cfg.raysampler.max_depth,
stratified=cfg.raysampler.stratified,
stratified_test=cfg.raysampler.stratified_test,
chunk_size_test=cfg.raysampler.chunk_size_test,
n_harmonic_functions_xyz=cfg.implicit_function.n_harmonic_functions_xyz,
n_harmonic_functions_dir=cfg.implicit_function.n_harmonic_functions_dir,
n_hidden_neurons_xyz=cfg.implicit_function.n_hidden_neurons_xyz,
n_hidden_neurons_dir=cfg.implicit_function.n_hidden_neurons_dir,
n_layers_xyz=cfg.implicit_function.n_layers_xyz,
density_noise_std=cfg.implicit_function.density_noise_std,
)
# Move the model to the relevant device.
model.to(device)
# Resume from the checkpoint.
checkpoint_path = os.path.join(hydra.utils.get_original_cwd(), cfg.checkpoint_path)
if not os.path.isfile(checkpoint_path):
raise ValueError(f"Model checkpoint {checkpoint_path} does not exist!")
print(f"Loading checkpoint {checkpoint_path}.")
loaded_data = torch.load(checkpoint_path)
# Do not load the cached xy grid.
# - this allows setting an arbitrary evaluation image size.
state_dict = {
k: v
for k, v in loaded_data["model"].items()
if "_grid_raysampler._xy_grid" not in k
}
model.load_state_dict(state_dict, strict=False)
# Load the test data.
if cfg.test.mode == "evaluation":
_, _, test_dataset = get_nerf_datasets(
dataset_name=cfg.data.dataset_name,
image_size=cfg.data.image_size,
)
elif cfg.test.mode == "export_video":
train_dataset, _, _ = get_nerf_datasets(
dataset_name=cfg.data.dataset_name,
image_size=cfg.data.image_size,
)
test_dataset = generate_eval_video_cameras(
train_dataset,
trajectory_type=cfg.test.trajectory_type,
up=cfg.test.up,
scene_center=cfg.test.scene_center,
n_eval_cams=cfg.test.n_frames,
trajectory_scale=cfg.test.trajectory_scale,
)
# store the video in directory (checkpoint_file - extension + '_video')
export_dir = os.path.splitext(checkpoint_path)[0] + "_video"
os.makedirs(export_dir, exist_ok=True)
else:
raise ValueError(f"Unknown test mode {cfg.test_mode}.")
# Init the test dataloader.
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
shuffle=False,
num_workers=0,
collate_fn=trivial_collate,
)
if cfg.test.mode == "evaluation":
# Init the test stats object.
eval_stats = ["mse_coarse", "mse_fine", "psnr_coarse", "psnr_fine", "sec/it"]
stats = Stats(eval_stats)
stats.new_epoch()
elif cfg.test.mode == "export_video":
# Init the frame buffer.
frame_paths = []
# Set the model to the eval mode.
model.eval()
# Run the main testing loop.
for batch_idx, test_batch in enumerate(test_dataloader):
test_image, test_camera, camera_idx = test_batch[0].values()
if test_image is not None:
test_image = test_image.to(device)
test_camera = test_camera.to(device)
# Activate eval mode of the model (lets us do a full rendering pass).
model.eval()
with torch.no_grad():
test_nerf_out, test_metrics = model(
None, # we do not use pre-cached cameras
test_camera,
test_image,
)
if cfg.test.mode == "evaluation":
# Update stats with the validation metrics.
stats.update(test_metrics, stat_set="test")
stats.print(stat_set="test")
elif cfg.test.mode == "export_video":
# Store the video frame.
frame = test_nerf_out["rgb_fine"][0].detach().cpu()
frame_path = os.path.join(export_dir, f"frame_{batch_idx:05d}.png")
print(f"Writing {frame_path}.")
Image.fromarray((frame.numpy() * 255.0).astype(np.uint8)).save(frame_path)
frame_paths.append(frame_path)
if cfg.test.mode == "evaluation":
print(f"Final evaluation metrics on '{cfg.data.dataset_name}':")
for stat in eval_stats:
stat_value = stats.stats["test"][stat].get_epoch_averages()[0]
print(f"{stat:15s}: {stat_value:1.4f}")
elif cfg.test.mode == "export_video":
# Convert the exported frames to a video.
video_path = os.path.join(export_dir, "video.mp4")
ffmpeg_bin = "ffmpeg"
frame_regexp = os.path.join(export_dir, "frame_%05d.png")
ffmcmd = (
"%s -r %d -i %s -vcodec h264 -f mp4 -y -b 2000k -pix_fmt yuv420p %s"
% (ffmpeg_bin, cfg.test.fps, frame_regexp, video_path)
)
ret = os.system(ffmcmd)
if ret != 0:
raise RuntimeError("ffmpeg failed!")
if __name__ == "__main__":
main()
|