Spaces:
Sleeping
Sleeping
File size: 11,047 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import tempfile
import cv2
import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal, assert_array_equal
import mmcv
def test_flowread():
data_dir = osp.join(osp.dirname(__file__), '../data')
flow_shape = (60, 80, 2)
# read .flo file
flow = mmcv.flowread(osp.join(data_dir, 'optflow.flo'))
assert flow.shape == flow_shape
# pseudo read
flow_same = mmcv.flowread(flow)
assert_array_equal(flow, flow_same)
# read quantized flow concatenated vertically
flow = mmcv.flowread(
osp.join(data_dir, 'optflow_concat0.jpg'), quantize=True, denorm=True)
assert flow.shape == flow_shape
# read quantized flow concatenated horizontally
flow = mmcv.flowread(
osp.join(data_dir, 'optflow_concat1.jpg'),
quantize=True,
concat_axis=1,
denorm=True)
assert flow.shape == flow_shape
# test exceptions
notflow_file = osp.join(data_dir, 'color.jpg')
with pytest.raises(TypeError):
mmcv.flowread(1)
with pytest.raises(IOError):
mmcv.flowread(notflow_file)
with pytest.raises(IOError):
mmcv.flowread(notflow_file, quantize=True)
with pytest.raises(ValueError):
mmcv.flowread(np.zeros((100, 100, 1)))
def test_flowwrite():
flow = np.random.rand(100, 100, 2).astype(np.float32)
# write to a .flo file
tmp_filehandler, filename = tempfile.mkstemp()
mmcv.flowwrite(flow, filename)
flow_from_file = mmcv.flowread(filename)
assert_array_equal(flow, flow_from_file)
os.close(tmp_filehandler)
os.remove(filename)
# write to two .jpg files
tmp_filename = osp.join(tempfile.gettempdir(), 'mmcv_test_flow.jpg')
for concat_axis in range(2):
mmcv.flowwrite(
flow, tmp_filename, quantize=True, concat_axis=concat_axis)
shape = (200, 100) if concat_axis == 0 else (100, 200)
assert osp.isfile(tmp_filename)
assert mmcv.imread(tmp_filename, flag='unchanged').shape == shape
os.remove(tmp_filename)
# test exceptions
with pytest.raises(AssertionError):
mmcv.flowwrite(flow, tmp_filename, quantize=True, concat_axis=2)
def test_quantize_flow():
flow = (np.random.rand(10, 8, 2).astype(np.float32) - 0.5) * 15
max_val = 5.0
dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=False)
ref = np.zeros_like(flow, dtype=np.uint8)
for i in range(ref.shape[0]):
for j in range(ref.shape[1]):
for k in range(ref.shape[2]):
val = flow[i, j, k] + max_val
val = min(max(val, 0), 2 * max_val)
ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
assert_array_equal(dx, ref[..., 0])
assert_array_equal(dy, ref[..., 1])
max_val = 0.5
dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=True)
ref = np.zeros_like(flow, dtype=np.uint8)
for i in range(ref.shape[0]):
for j in range(ref.shape[1]):
for k in range(ref.shape[2]):
scale = flow.shape[1] if k == 0 else flow.shape[0]
val = flow[i, j, k] / scale + max_val
val = min(max(val, 0), 2 * max_val)
ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
assert_array_equal(dx, ref[..., 0])
assert_array_equal(dy, ref[..., 1])
def test_dequantize_flow():
dx = np.random.randint(256, size=(10, 8), dtype=np.uint8)
dy = np.random.randint(256, size=(10, 8), dtype=np.uint8)
max_val = 5.0
flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=False)
ref = np.zeros_like(flow, dtype=np.float32)
for i in range(ref.shape[0]):
for j in range(ref.shape[1]):
ref[i, j, 0] = float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val
ref[i, j, 1] = float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val
assert_array_almost_equal(flow, ref)
max_val = 0.5
flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=True)
h, w = dx.shape
ref = np.zeros_like(flow, dtype=np.float32)
for i in range(ref.shape[0]):
for j in range(ref.shape[1]):
ref[i, j,
0] = (float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val) * w
ref[i, j,
1] = (float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val) * h
assert_array_almost_equal(flow, ref)
def test_flow2rgb():
flow = np.array([[[0, 0], [0.5, 0.5], [1, 1], [2, 1], [3, np.inf]]],
dtype=np.float32)
flow_img = mmcv.flow2rgb(flow)
# yapf: disable
assert_array_almost_equal(
flow_img,
np.array([[[1., 1., 1.],
[1., 0.826074731, 0.683772236],
[1., 0.652149462, 0.367544472],
[1., 0.265650552, 5.96046448e-08],
[0., 0., 0.]]],
dtype=np.float32))
# yapf: enable
def test_flow_warp():
img = np.zeros((5, 5, 3))
img[2, 2, 0] = 1
flow = np.ones((5, 5, 2))
res_nn = mmcv.flow_warp(img, flow, interpolate_mode='nearest')
res_bi = mmcv.flow_warp(img, flow, interpolate_mode='bilinear')
assert_array_almost_equal(res_nn, res_bi, decimal=5)
img = np.zeros((5, 5, 1))
img[2, 2, 0] = 1
img[2, 3, 0] = 0.75
flow = np.zeros((5, 5, 2))
flow[2, 2, :] = [0.5, 0.7]
res_ = np.copy(img)
res_[2, 2] = 0.5 * 0.3 + 0.75 * 0.5 * 0.3
res_bi = mmcv.flow_warp(img, flow, interpolate_mode='bilinear')
assert_array_almost_equal(res_, res_bi, decimal=5)
with pytest.raises(NotImplementedError):
_ = mmcv.flow_warp(img, flow, interpolate_mode='xxx')
with pytest.raises(AssertionError):
_ = mmcv.flow_warp(img, flow[:, :, 0], interpolate_mode='xxx')
def test_make_color_wheel():
default_color_wheel = mmcv.make_color_wheel()
color_wheel = mmcv.make_color_wheel([2, 2, 2, 2, 2, 2])
# yapf: disable
assert_array_equal(default_color_wheel, np.array(
[[1. , 0. , 0. ], # noqa
[1. , 0.06666667, 0. ], # noqa
[1. , 0.13333334, 0. ], # noqa
[1. , 0.2 , 0. ], # noqa
[1. , 0.26666668, 0. ], # noqa
[1. , 0.33333334, 0. ], # noqa
[1. , 0.4 , 0. ], # noqa
[1. , 0.46666667, 0. ], # noqa
[1. , 0.53333336, 0. ], # noqa
[1. , 0.6 , 0. ], # noqa
[1. , 0.6666667 , 0. ], # noqa
[1. , 0.73333335, 0. ], # noqa
[1. , 0.8 , 0. ], # noqa
[1. , 0.8666667 , 0. ], # noqa
[1. , 0.93333334, 0. ], # noqa
[1. , 1. , 0. ], # noqa
[0.8333333 , 1. , 0. ], # noqa
[0.6666667 , 1. , 0. ], # noqa
[0.5 , 1. , 0. ], # noqa
[0.33333334, 1. , 0. ], # noqa
[0.16666667, 1. , 0. ], # noqa
[0. , 1. , 0. ], # noqa
[0. , 1. , 0.25 ], # noqa
[0. , 1. , 0.5 ], # noqa
[0. , 1. , 0.75 ], # noqa
[0. , 1. , 1. ], # noqa
[0. , 0.90909094, 1. ], # noqa
[0. , 0.8181818 , 1. ], # noqa
[0. , 0.72727275, 1. ], # noqa
[0. , 0.6363636 , 1. ], # noqa
[0. , 0.54545456, 1. ], # noqa
[0. , 0.45454547, 1. ], # noqa
[0. , 0.36363637, 1. ], # noqa
[0. , 0.27272728, 1. ], # noqa
[0. , 0.18181819, 1. ], # noqa
[0. , 0.09090909, 1. ], # noqa
[0. , 0. , 1. ], # noqa
[0.07692308, 0. , 1. ], # noqa
[0.15384616, 0. , 1. ], # noqa
[0.23076923, 0. , 1. ], # noqa
[0.30769232, 0. , 1. ], # noqa
[0.3846154 , 0. , 1. ], # noqa
[0.46153846, 0. , 1. ], # noqa
[0.53846157, 0. , 1. ], # noqa
[0.61538464, 0. , 1. ], # noqa
[0.6923077 , 0. , 1. ], # noqa
[0.7692308 , 0. , 1. ], # noqa
[0.84615386, 0. , 1. ], # noqa
[0.9230769 , 0. , 1. ], # noqa
[1. , 0. , 1. ], # noqa
[1. , 0. , 0.8333333 ], # noqa
[1. , 0. , 0.6666667 ], # noqa
[1. , 0. , 0.5 ], # noqa
[1. , 0. , 0.33333334], # noqa
[1. , 0. , 0.16666667]], dtype=np.float32)) # noqa
assert_array_equal(
color_wheel,
np.array([[1., 0. , 0. ], # noqa
[1. , 0.5, 0. ], # noqa
[1. , 1. , 0. ], # noqa
[0.5, 1. , 0. ], # noqa
[0. , 1. , 0. ], # noqa
[0. , 1. , 0.5], # noqa
[0. , 1. , 1. ], # noqa
[0. , 0.5, 1. ], # noqa
[0. , 0. , 1. ], # noqa
[0.5, 0. , 1. ], # noqa
[1. , 0. , 1. ], # noqa
[1. , 0. , 0.5]], dtype=np.float32)) # noqa
# yapf: enable
def test_flow_from_bytes():
data_dir = osp.join(osp.dirname(__file__), '../data')
flow_shape = (60, 80, 2)
flow_file = osp.join(data_dir, 'optflow.flo')
# read .flo file
flow_fromfile = mmcv.flowread(flow_file)
with open(flow_file, 'rb') as f:
flow_bytes = f.read()
flow_frombytes = mmcv.flow_from_bytes(flow_bytes)
assert flow_frombytes.shape == flow_shape
assert np.all(flow_frombytes == flow_fromfile)
def test_sparse_flow_from_bytes():
data_dir = osp.join(osp.dirname(__file__), '../data')
flow_file = osp.join(data_dir, 'sparse_flow.png')
with open(flow_file, 'rb') as f:
flow_bytes = f.read()
# read flow from bytes
flow_frombytes, valid_frombytes = mmcv.sparse_flow_from_bytes(flow_bytes)
# test flow shape is [H, W, 2] and valid shape is [H, W]
assert flow_frombytes.shape[:2] == valid_frombytes.shape
assert flow_frombytes.shape[2] == 2
def read_sparse_flow_from_file():
flow = cv2.imread(flow_file, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
flow = flow[:, :, ::-1].astype(np.float32)
flow, valid = flow[:, :, :2], flow[:, :, 2]
flow = (flow - 2**15) / 64.0
return flow, valid
# read flow from file
flow_flowfile, valid_fromfile = read_sparse_flow_from_file()
assert np.all(flow_frombytes == flow_flowfile)
assert np.all(valid_frombytes == valid_fromfile)
|