File size: 7,797 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch

from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE


class Testnms:

    @pytest.mark.parametrize('device', [
        pytest.param(
            'cuda',
            marks=pytest.mark.skipif(
                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
        pytest.param(
            'mlu',
            marks=pytest.mark.skipif(
                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    ])
    def test_nms_allclose(self, device):
        from mmcv.ops import nms
        np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
                             [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
                            dtype=np.float32)
        np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
        np_inds = np.array([1, 0, 3])
        np_dets = np.array([[3.0, 6.0, 9.0, 11.0, 0.9],
                            [6.0, 3.0, 8.0, 7.0, 0.6],
                            [1.0, 4.0, 13.0, 7.0, 0.2]])
        boxes = torch.from_numpy(np_boxes)
        scores = torch.from_numpy(np_scores)
        dets, inds = nms(boxes, scores, iou_threshold=0.3, offset=0)
        assert np.allclose(dets, np_dets)  # test cpu
        assert np.allclose(inds, np_inds)  # test cpu
        dets, inds = nms(
            boxes.to(device), scores.to(device), iou_threshold=0.3, offset=0)
        assert np.allclose(dets.cpu().numpy(), np_dets)  # test gpu
        assert np.allclose(inds.cpu().numpy(), np_inds)  # test gpu

    def test_softnms_allclose(self):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import soft_nms
        np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
                             [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
                            dtype=np.float32)
        np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)

        np_output = {
            'linear': {
                'dets':
                np.array(
                    [[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.6],
                     [3., 7., 10., 12., 0.29024392], [1., 4., 13., 7., 0.2]],
                    dtype=np.float32),
                'inds':
                np.array([1, 0, 2, 3], dtype=np.int64)
            },
            'gaussian': {
                'dets':
                np.array([[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.59630775],
                          [3., 7., 10., 12., 0.35275510],
                          [1., 4., 13., 7., 0.18650459]],
                         dtype=np.float32),
                'inds':
                np.array([1, 0, 2, 3], dtype=np.int64)
            },
            'naive': {
                'dets':
                np.array([[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.6],
                          [1., 4., 13., 7., 0.2]],
                         dtype=np.float32),
                'inds':
                np.array([1, 0, 3], dtype=np.int64)
            }
        }

        boxes = torch.from_numpy(np_boxes)
        scores = torch.from_numpy(np_scores)

        configs = [[0.3, 0.5, 0.01, 'linear'], [0.3, 0.5, 0.01, 'gaussian'],
                   [0.3, 0.5, 0.01, 'naive']]

        for iou, sig, mscore, m in configs:
            dets, inds = soft_nms(
                boxes,
                scores,
                iou_threshold=iou,
                sigma=sig,
                min_score=mscore,
                method=m)
            assert np.allclose(dets.cpu().numpy(), np_output[m]['dets'])
            assert np.allclose(inds.cpu().numpy(), np_output[m]['inds'])

        if torch.__version__ != 'parrots':
            boxes = boxes.cuda()
            scores = scores.cuda()
            for iou, sig, mscore, m in configs:
                dets, inds = soft_nms(
                    boxes,
                    scores,
                    iou_threshold=iou,
                    sigma=sig,
                    min_score=mscore,
                    method=m)
                assert np.allclose(dets.cpu().numpy(), np_output[m]['dets'])
                assert np.allclose(inds.cpu().numpy(), np_output[m]['inds'])

    def test_nms_match(self):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import nms, nms_match
        iou_thr = 0.6
        # empty input
        empty_dets = np.array([])
        assert len(nms_match(empty_dets, iou_thr)) == 0

        # non empty ndarray input
        np_dets = np.array(
            [[49.1, 32.4, 51.0, 35.9, 0.9], [49.3, 32.9, 51.0, 35.3, 0.9],
             [35.3, 11.5, 39.9, 14.5, 0.4], [35.2, 11.7, 39.7, 15.7, 0.3]],
            dtype=np.float32)
        np_groups = nms_match(np_dets, iou_thr)
        assert isinstance(np_groups[0], np.ndarray)
        assert len(np_groups) == 2
        tensor_dets = torch.from_numpy(np_dets)
        boxes = tensor_dets[:, :4]
        scores = tensor_dets[:, 4]
        nms_keep_inds = nms(boxes.contiguous(), scores.contiguous(),
                            iou_thr)[1]
        assert {g[0].item() for g in np_groups} == set(nms_keep_inds.tolist())

        # non empty tensor input
        tensor_dets = torch.from_numpy(np_dets)
        tensor_groups = nms_match(tensor_dets, iou_thr)
        assert isinstance(tensor_groups[0], torch.Tensor)
        for i in range(len(tensor_groups)):
            assert np.equal(tensor_groups[i].numpy(), np_groups[i]).all()

        # input of wrong shape
        wrong_dets = np.zeros((2, 3))
        with pytest.raises(AssertionError):
            nms_match(wrong_dets, iou_thr)

    def test_batched_nms(self):
        import mmcv
        from mmcv.ops import batched_nms
        results = mmcv.load('./tests/data/batched_nms_data.pkl')

        nms_max_num = 100
        nms_cfg = dict(
            type='nms',
            iou_threshold=0.7,
            score_threshold=0.5,
            max_num=nms_max_num)
        boxes, keep = batched_nms(
            torch.from_numpy(results['boxes']),
            torch.from_numpy(results['scores']),
            torch.from_numpy(results['idxs']),
            nms_cfg,
            class_agnostic=False)

        nms_cfg.update(split_thr=100)
        seq_boxes, seq_keep = batched_nms(
            torch.from_numpy(results['boxes']),
            torch.from_numpy(results['scores']),
            torch.from_numpy(results['idxs']),
            nms_cfg,
            class_agnostic=False)

        assert torch.equal(keep, seq_keep)
        assert torch.equal(boxes, seq_boxes)
        assert torch.equal(keep,
                           torch.from_numpy(results['keep'][:nms_max_num]))

        nms_cfg = dict(type='soft_nms', iou_threshold=0.7)
        boxes, keep = batched_nms(
            torch.from_numpy(results['boxes']),
            torch.from_numpy(results['scores']),
            torch.from_numpy(results['idxs']),
            nms_cfg,
            class_agnostic=False)

        nms_cfg.update(split_thr=100)
        seq_boxes, seq_keep = batched_nms(
            torch.from_numpy(results['boxes']),
            torch.from_numpy(results['scores']),
            torch.from_numpy(results['idxs']),
            nms_cfg,
            class_agnostic=False)

        assert torch.equal(keep, seq_keep)
        assert torch.equal(boxes, seq_boxes)

        # test skip nms when `nms_cfg` is None
        seq_boxes, seq_keep = batched_nms(
            torch.from_numpy(results['boxes']),
            torch.from_numpy(results['scores']),
            torch.from_numpy(results['idxs']),
            None,
            class_agnostic=False)
        assert len(seq_keep) == len(results['boxes'])
        # assert score is descending order
        assert ((seq_boxes[:, -1][1:] - seq_boxes[:, -1][:-1]) < 0).all()