File size: 6,649 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch

from mmcv.ops.multi_scale_deform_attn import (
    MultiScaleDeformableAttention, MultiScaleDeformableAttnFunction,
    multi_scale_deformable_attn_pytorch)

_USING_PARROTS = True
try:
    from parrots.autograd import gradcheck
except ImportError:
    from torch.autograd import gradcheck
    _USING_PARROTS = False


@pytest.mark.parametrize('device_type', [
    'cpu',
    pytest.param(
        'cuda:0',
        marks=pytest.mark.skipif(
            not torch.cuda.is_available(), reason='requires CUDA support'))
])
def test_multiscale_deformable_attention(device_type):

    with pytest.raises(ValueError):
        # embed_dims must be divisible by num_heads,
        MultiScaleDeformableAttention(
            embed_dims=256,
            num_heads=7,
        )
    device = torch.device(device_type)
    msda = MultiScaleDeformableAttention(
        embed_dims=3, num_levels=2, num_heads=3)
    msda.init_weights()
    num_query = 5
    bs = 1
    embed_dims = 3
    query = torch.rand(num_query, bs, embed_dims).to(device)
    key = torch.rand(num_query, bs, embed_dims).to(device)
    spatial_shapes = torch.Tensor([[2, 2], [1, 1]]).long().to(device)
    level_start_index = torch.Tensor([0, 4]).long().to(device)
    reference_points = torch.rand(bs, num_query, 2, 2).to(device)
    msda.to(device)
    msda(
        query,
        key,
        key,
        reference_points=reference_points,
        spatial_shapes=spatial_shapes,
        level_start_index=level_start_index)


def test_forward_multi_scale_deformable_attn_pytorch():
    N, M, D = 1, 2, 2
    Lq, L, P = 2, 2, 2
    shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long)
    S = sum((H * W).item() for H, W in shapes)

    torch.manual_seed(3)
    value = torch.rand(N, S, M, D) * 0.01
    sampling_locations = torch.rand(N, Lq, M, L, P, 2)
    attention_weights = torch.rand(N, Lq, M, L, P) + 1e-5
    attention_weights /= attention_weights.sum(
        -1, keepdim=True).sum(
            -2, keepdim=True)

    multi_scale_deformable_attn_pytorch(value.double(), shapes,
                                        sampling_locations.double(),
                                        attention_weights.double()).detach()


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_forward_equal_with_pytorch_double():
    N, M, D = 1, 2, 2
    Lq, L, P = 2, 2, 2
    shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
    level_start_index = torch.cat((shapes.new_zeros(
        (1, )), shapes.prod(1).cumsum(0)[:-1]))
    S = sum((H * W).item() for H, W in shapes)

    torch.manual_seed(3)
    value = torch.rand(N, S, M, D).cuda() * 0.01
    sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
    attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
    attention_weights /= attention_weights.sum(
        -1, keepdim=True).sum(
            -2, keepdim=True)
    im2col_step = 2
    output_pytorch = multi_scale_deformable_attn_pytorch(
        value.double(), shapes, sampling_locations.double(),
        attention_weights.double()).detach().cpu()

    output_cuda = MultiScaleDeformableAttnFunction.apply(
        value.double(), shapes, level_start_index, sampling_locations.double(),
        attention_weights.double(), im2col_step).detach().cpu()
    assert torch.allclose(output_cuda, output_pytorch)
    max_abs_err = (output_cuda - output_pytorch).abs().max()
    max_rel_err = ((output_cuda - output_pytorch).abs() /
                   output_pytorch.abs()).max()
    assert max_abs_err < 1e-18
    assert max_rel_err < 1e-15


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_forward_equal_with_pytorch_float():
    N, M, D = 1, 2, 2
    Lq, L, P = 2, 2, 2
    shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
    level_start_index = torch.cat((shapes.new_zeros(
        (1, )), shapes.prod(1).cumsum(0)[:-1]))
    S = sum((H * W).item() for H, W in shapes)

    torch.manual_seed(3)
    value = torch.rand(N, S, M, D).cuda() * 0.01
    sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
    attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
    attention_weights /= attention_weights.sum(
        -1, keepdim=True).sum(
            -2, keepdim=True)
    im2col_step = 2
    output_pytorch = multi_scale_deformable_attn_pytorch(
        value, shapes, sampling_locations, attention_weights).detach().cpu()

    output_cuda = MultiScaleDeformableAttnFunction.apply(
        value, shapes, level_start_index, sampling_locations,
        attention_weights, im2col_step).detach().cpu()
    assert torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3)
    max_abs_err = (output_cuda - output_pytorch).abs().max()
    max_rel_err = ((output_cuda - output_pytorch).abs() /
                   output_pytorch.abs()).max()
    assert max_abs_err < 1e-9
    assert max_rel_err < 1e-6


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
@pytest.mark.parametrize('channels', [
    4,
    30,
    32,
    64,
    71,
    1025,
])
def test_gradient_numerical(channels,
                            grad_value=True,
                            grad_sampling_loc=True,
                            grad_attn_weight=True):

    N, M, _ = 1, 2, 2
    Lq, L, P = 2, 2, 2
    shapes = torch.as_tensor([(3, 2), (2, 1)], dtype=torch.long).cuda()
    level_start_index = torch.cat((shapes.new_zeros(
        (1, )), shapes.prod(1).cumsum(0)[:-1]))
    S = sum((H * W).item() for H, W in shapes)

    value = torch.rand(N, S, M, channels).cuda() * 0.01
    sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
    attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
    attention_weights /= attention_weights.sum(
        -1, keepdim=True).sum(
            -2, keepdim=True)
    im2col_step = 2

    func = MultiScaleDeformableAttnFunction.apply

    value.requires_grad = grad_value
    sampling_locations.requires_grad = grad_sampling_loc
    attention_weights.requires_grad = grad_attn_weight
    if _USING_PARROTS:
        assert gradcheck(
            func, (value.double(), shapes, level_start_index,
                   sampling_locations.double(), attention_weights.double(),
                   im2col_step),
            no_grads=[shapes, level_start_index])
    else:
        assert gradcheck(func, (value.double(), shapes, level_start_index,
                                sampling_locations.double(),
                                attention_weights.double(), im2col_step))