File size: 5,682 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch

from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE

_USING_PARROTS = True
try:
    from parrots.autograd import gradcheck
except ImportError:
    from torch.autograd import gradcheck
    _USING_PARROTS = False

# torch.set_printoptions(precision=8, threshold=100)

inputs = [
    ([[1., 0], [0, 1.]], [0, 1]),
    ([[1., 0, -1.], [0, 1., 2.]], [2, 1]),
    ([[1e-6, 2e-6, 3e-6], [4e-6, 5e-5, 6e-4], [7e-3, 8e-2, 9e-1]], [1, 2, 0]),
]

softmax_outputs = [(0.00566451, [[-0.00657264, 0.00657264],
                                 [0.00657264, -0.00657264]]),
                   (0.34956908, [[0.10165970, 0.03739851, -0.13905823],
                                 [0.01227554, -0.10298023, 0.09070466]]),
                   (0.15754992, [[0.02590877, -0.05181759, 0.02590882],
                                 [0.02589641, 0.02589760, -0.05179400],
                                 [-0.07307514, 0.02234372, 0.05073142]])]

sigmoid_outputs = [(0.13562961, [[-0.00657264, 0.11185755],
                                 [0.11185755, -0.00657264]]),
                   (1.10251057, [[0.28808805, 0.11185755, -0.09602935],
                                 [0.11185755, -0.00657264, 0.40376765]]),
                   (0.42287254, [[0.07457182, -0.02485716, 0.07457201],
                                 [0.07457211, 0.07457669, -0.02483728],
                                 [-0.02462499, 0.08277918, 0.18050370]])]


class Testfocalloss:

    def _test_softmax(self, dtype=torch.float):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import softmax_focal_loss
        alpha = 0.25
        gamma = 2.0
        for case, output in zip(inputs, softmax_outputs):
            np_x = np.array(case[0])
            np_y = np.array(case[1])
            np_x_grad = np.array(output[1])

            x = torch.from_numpy(np_x).cuda().type(dtype)
            x.requires_grad_()
            y = torch.from_numpy(np_y).cuda().long()

            loss = softmax_focal_loss(x, y, gamma, alpha, None, 'mean')
            loss.backward()

            assert np.allclose(loss.data.cpu().numpy(), output[0], 1e-2)
            assert np.allclose(x.grad.data.cpu(), np_x_grad, 1e-2)

    def _test_sigmoid(self, device, dtype=torch.float):
        from mmcv.ops import sigmoid_focal_loss
        alpha = 0.25
        gamma = 2.0
        for case, output in zip(inputs, sigmoid_outputs):
            np_x = np.array(case[0])
            np_y = np.array(case[1])
            np_x_grad = np.array(output[1])

            x = torch.from_numpy(np_x).to(device).type(dtype)
            x.requires_grad_()
            y = torch.from_numpy(np_y).to(device).long()

            loss = sigmoid_focal_loss(x, y, gamma, alpha, None, 'mean')
            loss.backward()

            assert np.allclose(loss.data.cpu().numpy(), output[0], 1e-2)
            assert np.allclose(x.grad.data.cpu(), np_x_grad, 1e-2)

    def _test_grad_softmax(self, dtype=torch.float):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import SoftmaxFocalLoss
        alpha = 0.25
        gamma = 2.0
        for case in inputs:
            np_x = np.array(case[0])
            np_y = np.array(case[1])

            x = torch.from_numpy(np_x).cuda().type(dtype)
            x.requires_grad_()
            y = torch.from_numpy(np_y).cuda().long()

            floss = SoftmaxFocalLoss(gamma, alpha)
            if _USING_PARROTS:
                # gradcheck(floss, (x, y),
                #           no_grads=[y])
                pass
            else:
                gradcheck(floss, (x, y), eps=1e-2, atol=1e-2)

    def _test_grad_sigmoid(self, dtype=torch.float):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import SigmoidFocalLoss
        alpha = 0.25
        gamma = 2.0
        for case in inputs:
            np_x = np.array(case[0])
            np_y = np.array(case[1])

            x = torch.from_numpy(np_x).cuda().type(dtype)
            x.requires_grad_()
            y = torch.from_numpy(np_y).cuda().long()

            floss = SigmoidFocalLoss(gamma, alpha)
            if _USING_PARROTS:
                # gradcheck(floss, (x, y),
                #           no_grads=[y])
                pass
            else:
                gradcheck(floss, (x, y), eps=1e-2, atol=1e-2)

    def test_softmax_float(self):
        self._test_softmax(dtype=torch.float)

    def test_softmax_half(self):
        self._test_softmax(dtype=torch.half)

    @pytest.mark.parametrize('device', [
        pytest.param(
            'cuda',
            marks=pytest.mark.skipif(
                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
        pytest.param(
            'mlu',
            marks=pytest.mark.skipif(
                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    ])
    def test_sigmoid_float(self, device):
        self._test_sigmoid(device=device, dtype=torch.float)

    @pytest.mark.parametrize('device', [
        pytest.param(
            'cuda',
            marks=pytest.mark.skipif(
                not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
        pytest.param(
            'mlu',
            marks=pytest.mark.skipif(
                not IS_MLU_AVAILABLE, reason='requires MLU support'))
    ])
    def test_sigmoid_half(self, device):
        self._test_sigmoid(device, dtype=torch.half)

    def test_grad_softmax_float(self):
        self._test_grad_softmax(dtype=torch.float)

    def test_grad_sigmoid_float(self):
        self._test_grad_sigmoid(dtype=torch.float)