File size: 6,241 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright (c) OpenMMLab. All rights reserved.
import copy

import pytest
import torch.nn as nn

import mmcv
from mmcv.utils import IS_IPU_AVAILABLE

if IS_IPU_AVAILABLE:
    from poptorch.options import _IExecutionStrategy

    from mmcv.device.ipu import cfg2options
    from mmcv.device.ipu.utils import (build_from_cfg_with_wrapper,
                                       model_sharding)

skip_no_ipu = pytest.mark.skipif(
    not IS_IPU_AVAILABLE, reason='test case under ipu environment')


class ToyModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(3, 3, 1)
        self.bn = nn.BatchNorm2d(3)
        self.relu = nn.ReLU6()


@skip_no_ipu
def test_build_from_cfg():
    BACKBONES = mmcv.Registry('backbone')

    @BACKBONES.register_module()
    class ResNet:

        def __init__(self, depth, stages=4):
            self.depth = depth
            self.stages = stages

    @BACKBONES.register_module()
    class ResNeXt:

        def __init__(self, depth, stages=4):
            self.depth = depth
            self.stages = stages

    cfg = dict(type='ResNet', depth=50)
    model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    assert isinstance(model, ResNet)
    assert model.depth == 50 and model.stages == 4

    cfg = dict(type='ResNet', depth=50)
    model = build_from_cfg_with_wrapper(
        cfg, BACKBONES, default_args={'stages': 3})
    assert isinstance(model, ResNet)
    assert model.depth == 50 and model.stages == 3

    cfg = dict(type='ResNeXt', depth=50, stages=3)
    model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    assert isinstance(model, ResNeXt)
    assert model.depth == 50 and model.stages == 3

    cfg = dict(type=ResNet, depth=50)
    model = build_from_cfg_with_wrapper(cfg, BACKBONES)
    assert isinstance(model, ResNet)
    assert model.depth == 50 and model.stages == 4

    # type defined using default_args
    cfg = dict(depth=50)
    model = build_from_cfg_with_wrapper(
        cfg, BACKBONES, default_args=dict(type='ResNet'))
    assert isinstance(model, ResNet)
    assert model.depth == 50 and model.stages == 4

    cfg = dict(depth=50)
    model = build_from_cfg_with_wrapper(
        cfg, BACKBONES, default_args=dict(type=ResNet))
    assert isinstance(model, ResNet)
    assert model.depth == 50 and model.stages == 4

    # not a registry
    with pytest.raises(TypeError):
        cfg = dict(type='VGG')
        model = build_from_cfg_with_wrapper(cfg, 'BACKBONES')

    # non-registered class
    with pytest.raises(KeyError):
        cfg = dict(type='VGG')
        model = build_from_cfg_with_wrapper(cfg, BACKBONES)

    # default_args must be a dict or None
    with pytest.raises(TypeError):
        cfg = dict(type='ResNet', depth=50)
        model = build_from_cfg_with_wrapper(cfg, BACKBONES, default_args=1)

    # cfg['type'] should be a str or class
    with pytest.raises(TypeError):
        cfg = dict(type=1000)
        model = build_from_cfg_with_wrapper(cfg, BACKBONES)

    # cfg should contain the key "type"
    with pytest.raises(KeyError, match='must contain the key "type"'):
        cfg = dict(depth=50, stages=4)
        model = build_from_cfg_with_wrapper(cfg, BACKBONES)

    # cfg or default_args should contain the key "type"
    with pytest.raises(KeyError, match='must contain the key "type"'):
        cfg = dict(depth=50)
        model = build_from_cfg_with_wrapper(
            cfg, BACKBONES, default_args=dict(stages=4))

    # incorrect registry type
    with pytest.raises(TypeError):
        cfg = dict(type='ResNet', depth=50)
        model = build_from_cfg_with_wrapper(cfg, 'BACKBONES')

    # incorrect default_args type
    with pytest.raises(TypeError):
        cfg = dict(type='ResNet', depth=50)
        model = build_from_cfg_with_wrapper(cfg, BACKBONES, default_args=0)

    # incorrect arguments
    with pytest.raises(TypeError):
        cfg = dict(type='ResNet', non_existing_arg=50)
        model = build_from_cfg_with_wrapper(cfg, BACKBONES)

    # cfg not dict
    with pytest.raises(TypeError):
        cfg = []
        model = build_from_cfg_with_wrapper(cfg, BACKBONES)


@skip_no_ipu
def test_cast_to_options():
    options_cfg = dict(
        randomSeed=888,
        enableExecutableCaching='cache_engine',
        train_cfg=dict(
            executionStrategy='SameAsIpu',
            Training=dict(gradientAccumulation=8),
            availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
        ),
        eval_cfg=dict(deviceIterations=1, ),
    )
    ipu_options = cfg2options(copy.deepcopy(options_cfg))
    assert 'training' in ipu_options
    assert 'inference' in ipu_options
    assert ipu_options['training']._values['random_seed'] == 888
    assert ipu_options['training']._values['replication_factor'] == 1
    assert ipu_options['training']._values['available_memory_proportion'] == {
        0: 0.3,
        1: 0.3,
        2: 0.3,
        3: 0.3
    }
    assert ipu_options['training']._popart.options[
        'cachePath'] == 'cache_engine'
    assert isinstance(ipu_options['training']._execution_strategy,
                      _IExecutionStrategy)
    assert ipu_options['inference']._values['device_iterations'] == 1

    with pytest.raises(NotImplementedError, match='cfg type'):
        _options_cfg = copy.deepcopy(options_cfg)
        _options_cfg['randomSeed'] = (1, 3)
        cfg2options(_options_cfg)

    with pytest.raises(NotImplementedError, match='options_node type'):
        _options_cfg = copy.deepcopy(options_cfg)
        _options_cfg['train_cfg']['Precision'] = {'autocast_policy': 123}
        cfg2options(_options_cfg)


@skip_no_ipu
def test_model_sharding():

    model = ToyModel()
    split_edges = [dict(layer_to_call='666', ipu_id=0)]

    with pytest.raises(RuntimeError, match='split_edges:'):
        model_sharding(model, split_edges)

    model = ToyModel()
    split_edges = [
        dict(layer_to_call='conv', ipu_id=0),
        dict(layer_to_call=1, ipu_id=0)
    ]

    with pytest.raises(ValueError, match='The same layer is referenced'):
        model_sharding(model, split_edges)

    model = ToyModel()
    split_edges = [dict(layer_to_call='conv', ipu_id=0)]
    model_sharding(model, split_edges)