Spaces:
Starting
on
L40S
Starting
on
L40S
File size: 6,241 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import pytest
import torch.nn as nn
import mmcv
from mmcv.utils import IS_IPU_AVAILABLE
if IS_IPU_AVAILABLE:
from poptorch.options import _IExecutionStrategy
from mmcv.device.ipu import cfg2options
from mmcv.device.ipu.utils import (build_from_cfg_with_wrapper,
model_sharding)
skip_no_ipu = pytest.mark.skipif(
not IS_IPU_AVAILABLE, reason='test case under ipu environment')
class ToyModel(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 3, 1)
self.bn = nn.BatchNorm2d(3)
self.relu = nn.ReLU6()
@skip_no_ipu
def test_build_from_cfg():
BACKBONES = mmcv.Registry('backbone')
@BACKBONES.register_module()
class ResNet:
def __init__(self, depth, stages=4):
self.depth = depth
self.stages = stages
@BACKBONES.register_module()
class ResNeXt:
def __init__(self, depth, stages=4):
self.depth = depth
self.stages = stages
cfg = dict(type='ResNet', depth=50)
model = build_from_cfg_with_wrapper(cfg, BACKBONES)
assert isinstance(model, ResNet)
assert model.depth == 50 and model.stages == 4
cfg = dict(type='ResNet', depth=50)
model = build_from_cfg_with_wrapper(
cfg, BACKBONES, default_args={'stages': 3})
assert isinstance(model, ResNet)
assert model.depth == 50 and model.stages == 3
cfg = dict(type='ResNeXt', depth=50, stages=3)
model = build_from_cfg_with_wrapper(cfg, BACKBONES)
assert isinstance(model, ResNeXt)
assert model.depth == 50 and model.stages == 3
cfg = dict(type=ResNet, depth=50)
model = build_from_cfg_with_wrapper(cfg, BACKBONES)
assert isinstance(model, ResNet)
assert model.depth == 50 and model.stages == 4
# type defined using default_args
cfg = dict(depth=50)
model = build_from_cfg_with_wrapper(
cfg, BACKBONES, default_args=dict(type='ResNet'))
assert isinstance(model, ResNet)
assert model.depth == 50 and model.stages == 4
cfg = dict(depth=50)
model = build_from_cfg_with_wrapper(
cfg, BACKBONES, default_args=dict(type=ResNet))
assert isinstance(model, ResNet)
assert model.depth == 50 and model.stages == 4
# not a registry
with pytest.raises(TypeError):
cfg = dict(type='VGG')
model = build_from_cfg_with_wrapper(cfg, 'BACKBONES')
# non-registered class
with pytest.raises(KeyError):
cfg = dict(type='VGG')
model = build_from_cfg_with_wrapper(cfg, BACKBONES)
# default_args must be a dict or None
with pytest.raises(TypeError):
cfg = dict(type='ResNet', depth=50)
model = build_from_cfg_with_wrapper(cfg, BACKBONES, default_args=1)
# cfg['type'] should be a str or class
with pytest.raises(TypeError):
cfg = dict(type=1000)
model = build_from_cfg_with_wrapper(cfg, BACKBONES)
# cfg should contain the key "type"
with pytest.raises(KeyError, match='must contain the key "type"'):
cfg = dict(depth=50, stages=4)
model = build_from_cfg_with_wrapper(cfg, BACKBONES)
# cfg or default_args should contain the key "type"
with pytest.raises(KeyError, match='must contain the key "type"'):
cfg = dict(depth=50)
model = build_from_cfg_with_wrapper(
cfg, BACKBONES, default_args=dict(stages=4))
# incorrect registry type
with pytest.raises(TypeError):
cfg = dict(type='ResNet', depth=50)
model = build_from_cfg_with_wrapper(cfg, 'BACKBONES')
# incorrect default_args type
with pytest.raises(TypeError):
cfg = dict(type='ResNet', depth=50)
model = build_from_cfg_with_wrapper(cfg, BACKBONES, default_args=0)
# incorrect arguments
with pytest.raises(TypeError):
cfg = dict(type='ResNet', non_existing_arg=50)
model = build_from_cfg_with_wrapper(cfg, BACKBONES)
# cfg not dict
with pytest.raises(TypeError):
cfg = []
model = build_from_cfg_with_wrapper(cfg, BACKBONES)
@skip_no_ipu
def test_cast_to_options():
options_cfg = dict(
randomSeed=888,
enableExecutableCaching='cache_engine',
train_cfg=dict(
executionStrategy='SameAsIpu',
Training=dict(gradientAccumulation=8),
availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
),
eval_cfg=dict(deviceIterations=1, ),
)
ipu_options = cfg2options(copy.deepcopy(options_cfg))
assert 'training' in ipu_options
assert 'inference' in ipu_options
assert ipu_options['training']._values['random_seed'] == 888
assert ipu_options['training']._values['replication_factor'] == 1
assert ipu_options['training']._values['available_memory_proportion'] == {
0: 0.3,
1: 0.3,
2: 0.3,
3: 0.3
}
assert ipu_options['training']._popart.options[
'cachePath'] == 'cache_engine'
assert isinstance(ipu_options['training']._execution_strategy,
_IExecutionStrategy)
assert ipu_options['inference']._values['device_iterations'] == 1
with pytest.raises(NotImplementedError, match='cfg type'):
_options_cfg = copy.deepcopy(options_cfg)
_options_cfg['randomSeed'] = (1, 3)
cfg2options(_options_cfg)
with pytest.raises(NotImplementedError, match='options_node type'):
_options_cfg = copy.deepcopy(options_cfg)
_options_cfg['train_cfg']['Precision'] = {'autocast_policy': 123}
cfg2options(_options_cfg)
@skip_no_ipu
def test_model_sharding():
model = ToyModel()
split_edges = [dict(layer_to_call='666', ipu_id=0)]
with pytest.raises(RuntimeError, match='split_edges:'):
model_sharding(model, split_edges)
model = ToyModel()
split_edges = [
dict(layer_to_call='conv', ipu_id=0),
dict(layer_to_call=1, ipu_id=0)
]
with pytest.raises(ValueError, match='The same layer is referenced'):
model_sharding(model, split_edges)
model = ToyModel()
split_edges = [dict(layer_to_call='conv', ipu_id=0)]
model_sharding(model, split_edges)
|