File size: 22,857 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# Copyright (c) OpenMMLab. All rights reserved.
import random
from tempfile import TemporaryDirectory

import numpy as np
import pytest
import torch
from scipy import stats
from torch import nn

from mmcv.cnn import (Caffe2XavierInit, ConstantInit, KaimingInit, NormalInit,
                      PretrainedInit, TruncNormalInit, UniformInit, XavierInit,
                      bias_init_with_prob, caffe2_xavier_init, constant_init,
                      initialize, kaiming_init, normal_init, trunc_normal_init,
                      uniform_init, xavier_init)

if torch.__version__ == 'parrots':
    pytest.skip('not supported in parrots now', allow_module_level=True)


def test_constant_init():
    conv_module = nn.Conv2d(3, 16, 3)
    constant_init(conv_module, 0.1)
    assert conv_module.weight.allclose(
        torch.full_like(conv_module.weight, 0.1))
    assert conv_module.bias.allclose(torch.zeros_like(conv_module.bias))
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    constant_init(conv_module_no_bias, 0.1)
    assert conv_module.weight.allclose(
        torch.full_like(conv_module.weight, 0.1))


def test_xavier_init():
    conv_module = nn.Conv2d(3, 16, 3)
    xavier_init(conv_module, bias=0.1)
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    xavier_init(conv_module, distribution='uniform')
    # TODO: sanity check of weight distribution, e.g. mean, std
    with pytest.raises(AssertionError):
        xavier_init(conv_module, distribution='student-t')
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    xavier_init(conv_module_no_bias)


def test_normal_init():
    conv_module = nn.Conv2d(3, 16, 3)
    normal_init(conv_module, bias=0.1)
    # TODO: sanity check of weight distribution, e.g. mean, std
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    normal_init(conv_module_no_bias)
    # TODO: sanity check distribution, e.g. mean, std


def test_trunc_normal_init():

    def _random_float(a, b):
        return (b - a) * random.random() + a

    def _is_trunc_normal(tensor, mean, std, a, b):
        # scipy's trunc norm is suited for data drawn from N(0, 1),
        # so we need to transform our data to test it using scipy.
        z_samples = (tensor.view(-1) - mean) / std
        z_samples = z_samples.tolist()
        a0 = (a - mean) / std
        b0 = (b - mean) / std
        p_value = stats.kstest(z_samples, 'truncnorm', args=(a0, b0))[1]
        return p_value > 0.0001

    conv_module = nn.Conv2d(3, 16, 3)
    mean = _random_float(-3, 3)
    std = _random_float(.01, 1)
    a = _random_float(mean - 2 * std, mean)
    b = _random_float(mean, mean + 2 * std)
    trunc_normal_init(conv_module, mean, std, a, b, bias=0.1)
    assert _is_trunc_normal(conv_module.weight, mean, std, a, b)
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))

    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    trunc_normal_init(conv_module_no_bias)
    # TODO: sanity check distribution, e.g. mean, std


def test_uniform_init():
    conv_module = nn.Conv2d(3, 16, 3)
    uniform_init(conv_module, bias=0.1)
    # TODO: sanity check of weight distribution, e.g. mean, std
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    uniform_init(conv_module_no_bias)


def test_kaiming_init():
    conv_module = nn.Conv2d(3, 16, 3)
    kaiming_init(conv_module, bias=0.1)
    # TODO: sanity check of weight distribution, e.g. mean, std
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    kaiming_init(conv_module, distribution='uniform')
    with pytest.raises(AssertionError):
        kaiming_init(conv_module, distribution='student-t')
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    kaiming_init(conv_module_no_bias)


def test_caffe_xavier_init():
    conv_module = nn.Conv2d(3, 16, 3)
    caffe2_xavier_init(conv_module)


def test_bias_init_with_prob():
    conv_module = nn.Conv2d(3, 16, 3)
    prior_prob = 0.1
    normal_init(conv_module, bias=bias_init_with_prob(0.1))
    # TODO: sanity check of weight distribution, e.g. mean, std
    bias = float(-np.log((1 - prior_prob) / prior_prob))
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, bias))


def test_constaninit():
    """test ConstantInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = ConstantInit(val=1, bias=2, layer='Conv2d')
    func(model)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))

    assert not torch.equal(model[2].weight,
                           torch.full(model[2].weight.shape, 1.))
    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))

    func = ConstantInit(val=3, bias_prob=0.01, layer='Linear')
    func(model)
    res = bias_init_with_prob(0.01)

    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 3.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, res))

    # test layer key with base class name
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))
    func = ConstantInit(val=4., bias=5., layer='_ConvNd')
    func(model)
    assert torch.all(model[0].weight == 4.)
    assert torch.all(model[2].weight == 4.)
    assert torch.all(model[0].bias == 5.)
    assert torch.all(model[2].bias == 5.)

    # test bias input type
    with pytest.raises(TypeError):
        func = ConstantInit(val=1, bias='1')
    # test bias_prob type
    with pytest.raises(TypeError):
        func = ConstantInit(val=1, bias_prob='1')
    # test layer input type
    with pytest.raises(TypeError):
        func = ConstantInit(val=1, layer=1)


def test_xavierinit():
    """test XavierInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = XavierInit(bias=0.1, layer='Conv2d')
    func(model)
    assert model[0].bias.allclose(torch.full_like(model[2].bias, 0.1))
    assert not model[2].bias.allclose(torch.full_like(model[0].bias, 0.1))

    constant_func = ConstantInit(val=0, bias=0, layer=['Conv2d', 'Linear'])
    func = XavierInit(gain=100, bias_prob=0.01, layer=['Conv2d', 'Linear'])
    model.apply(constant_func)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 0.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.))

    res = bias_init_with_prob(0.01)
    func(model)
    assert not torch.equal(model[0].weight,
                           torch.full(model[0].weight.shape, 0.))
    assert not torch.equal(model[2].weight,
                           torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, res))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, res))

    # test layer key with base class name
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))
    func = ConstantInit(val=4., bias=5., layer='_ConvNd')
    func(model)
    assert torch.all(model[0].weight == 4.)
    assert torch.all(model[2].weight == 4.)
    assert torch.all(model[0].bias == 5.)
    assert torch.all(model[2].bias == 5.)

    func = XavierInit(gain=100, bias_prob=0.01, layer='_ConvNd')
    func(model)
    assert not torch.all(model[0].weight == 4.)
    assert not torch.all(model[2].weight == 4.)
    assert torch.all(model[0].bias == res)
    assert torch.all(model[2].bias == res)

    # test bias input type
    with pytest.raises(TypeError):
        func = XavierInit(bias='0.1', layer='Conv2d')
    # test layer inpur type
    with pytest.raises(TypeError):
        func = XavierInit(bias=0.1, layer=1)


def test_normalinit():
    """test Normalinit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))

    func = NormalInit(mean=100, std=1e-5, bias=200, layer=['Conv2d', 'Linear'])
    func(model)
    assert model[0].weight.allclose(torch.tensor(100.))
    assert model[2].weight.allclose(torch.tensor(100.))
    assert model[0].bias.allclose(torch.tensor(200.))
    assert model[2].bias.allclose(torch.tensor(200.))

    func = NormalInit(
        mean=300, std=1e-5, bias_prob=0.01, layer=['Conv2d', 'Linear'])
    res = bias_init_with_prob(0.01)
    func(model)
    assert model[0].weight.allclose(torch.tensor(300.))
    assert model[2].weight.allclose(torch.tensor(300.))
    assert model[0].bias.allclose(torch.tensor(res))
    assert model[2].bias.allclose(torch.tensor(res))

    # test layer key with base class name
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))

    func = NormalInit(mean=300, std=1e-5, bias_prob=0.01, layer='_ConvNd')
    func(model)
    assert model[0].weight.allclose(torch.tensor(300.))
    assert model[2].weight.allclose(torch.tensor(300.))
    assert torch.all(model[0].bias == res)
    assert torch.all(model[2].bias == res)


def test_truncnormalinit():
    """test TruncNormalInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))

    func = TruncNormalInit(
        mean=100, std=1e-5, bias=200, a=0, b=200, layer=['Conv2d', 'Linear'])
    func(model)
    assert model[0].weight.allclose(torch.tensor(100.))
    assert model[2].weight.allclose(torch.tensor(100.))
    assert model[0].bias.allclose(torch.tensor(200.))
    assert model[2].bias.allclose(torch.tensor(200.))

    func = TruncNormalInit(
        mean=300,
        std=1e-5,
        a=100,
        b=400,
        bias_prob=0.01,
        layer=['Conv2d', 'Linear'])
    res = bias_init_with_prob(0.01)
    func(model)
    assert model[0].weight.allclose(torch.tensor(300.))
    assert model[2].weight.allclose(torch.tensor(300.))
    assert model[0].bias.allclose(torch.tensor(res))
    assert model[2].bias.allclose(torch.tensor(res))

    # test layer key with base class name
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))

    func = TruncNormalInit(
        mean=300, std=1e-5, a=100, b=400, bias_prob=0.01, layer='_ConvNd')
    func(model)
    assert model[0].weight.allclose(torch.tensor(300.))
    assert model[2].weight.allclose(torch.tensor(300.))
    assert torch.all(model[0].bias == res)
    assert torch.all(model[2].bias == res)


def test_uniforminit():
    """"test UniformInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = UniformInit(a=1, b=1, bias=2, layer=['Conv2d', 'Linear'])
    func(model)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 1.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))

    func = UniformInit(a=100, b=100, layer=['Conv2d', 'Linear'], bias=10)
    func(model)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape,
                                                   100.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape,
                                                   100.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 10.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 10.))

    # test layer key with base class name
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))

    func = UniformInit(a=100, b=100, bias_prob=0.01, layer='_ConvNd')
    res = bias_init_with_prob(0.01)
    func(model)
    assert torch.all(model[0].weight == 100.)
    assert torch.all(model[2].weight == 100.)
    assert torch.all(model[0].bias == res)
    assert torch.all(model[2].bias == res)


def test_kaiminginit():
    """test KaimingInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = KaimingInit(bias=0.1, layer='Conv2d')
    func(model)
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.1))
    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.1))

    func = KaimingInit(a=100, bias=10, layer=['Conv2d', 'Linear'])
    constant_func = ConstantInit(val=0, bias=0, layer=['Conv2d', 'Linear'])
    model.apply(constant_func)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 0.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.))

    func(model)
    assert not torch.equal(model[0].weight,
                           torch.full(model[0].weight.shape, 0.))
    assert not torch.equal(model[2].weight,
                           torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 10.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 10.))

    # test layer key with base class name
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Conv1d(1, 2, 1))
    func = KaimingInit(bias=0.1, layer='_ConvNd')
    func(model)
    assert torch.all(model[0].bias == 0.1)
    assert torch.all(model[2].bias == 0.1)

    func = KaimingInit(a=100, bias=10, layer='_ConvNd')
    constant_func = ConstantInit(val=0, bias=0, layer='_ConvNd')
    model.apply(constant_func)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 0.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.))

    func(model)
    assert not torch.equal(model[0].weight,
                           torch.full(model[0].weight.shape, 0.))
    assert not torch.equal(model[2].weight,
                           torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 10.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 10.))


def test_caffe2xavierinit():
    """test Caffe2XavierInit."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = Caffe2XavierInit(bias=0.1, layer='Conv2d')
    func(model)
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.1))
    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.1))


class FooModule(nn.Module):

    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(1, 2)
        self.conv2d = nn.Conv2d(3, 1, 3)
        self.conv2d_2 = nn.Conv2d(3, 2, 3)


def test_pretrainedinit():
    """test PretrainedInit class."""

    modelA = FooModule()
    constant_func = ConstantInit(val=1, bias=2, layer=['Conv2d', 'Linear'])
    modelA.apply(constant_func)
    modelB = FooModule()
    funcB = PretrainedInit(checkpoint='modelA.pth')
    modelC = nn.Linear(1, 2)
    funcC = PretrainedInit(checkpoint='modelA.pth', prefix='linear.')
    with TemporaryDirectory():
        torch.save(modelA.state_dict(), 'modelA.pth')
        funcB(modelB)
        assert torch.equal(modelB.linear.weight,
                           torch.full(modelB.linear.weight.shape, 1.))
        assert torch.equal(modelB.linear.bias,
                           torch.full(modelB.linear.bias.shape, 2.))
        assert torch.equal(modelB.conv2d.weight,
                           torch.full(modelB.conv2d.weight.shape, 1.))
        assert torch.equal(modelB.conv2d.bias,
                           torch.full(modelB.conv2d.bias.shape, 2.))
        assert torch.equal(modelB.conv2d_2.weight,
                           torch.full(modelB.conv2d_2.weight.shape, 1.))
        assert torch.equal(modelB.conv2d_2.bias,
                           torch.full(modelB.conv2d_2.bias.shape, 2.))

        funcC(modelC)
        assert torch.equal(modelC.weight, torch.full(modelC.weight.shape, 1.))
        assert torch.equal(modelC.bias, torch.full(modelC.bias.shape, 2.))


def test_initialize():
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    foonet = FooModule()

    # test layer key
    init_cfg = dict(type='Constant', layer=['Conv2d', 'Linear'], val=1, bias=2)
    initialize(model, init_cfg)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 1.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))
    assert init_cfg == dict(
        type='Constant', layer=['Conv2d', 'Linear'], val=1, bias=2)

    # test init_cfg with list type
    init_cfg = [
        dict(type='Constant', layer='Conv2d', val=1, bias=2),
        dict(type='Constant', layer='Linear', val=3, bias=4)
    ]
    initialize(model, init_cfg)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 3.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 4.))
    assert init_cfg == [
        dict(type='Constant', layer='Conv2d', val=1, bias=2),
        dict(type='Constant', layer='Linear', val=3, bias=4)
    ]

    # test layer key and override key
    init_cfg = dict(
        type='Constant',
        val=1,
        bias=2,
        layer=['Conv2d', 'Linear'],
        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))
    initialize(foonet, init_cfg)
    assert torch.equal(foonet.linear.weight,
                       torch.full(foonet.linear.weight.shape, 1.))
    assert torch.equal(foonet.linear.bias,
                       torch.full(foonet.linear.bias.shape, 2.))
    assert torch.equal(foonet.conv2d.weight,
                       torch.full(foonet.conv2d.weight.shape, 1.))
    assert torch.equal(foonet.conv2d.bias,
                       torch.full(foonet.conv2d.bias.shape, 2.))
    assert torch.equal(foonet.conv2d_2.weight,
                       torch.full(foonet.conv2d_2.weight.shape, 3.))
    assert torch.equal(foonet.conv2d_2.bias,
                       torch.full(foonet.conv2d_2.bias.shape, 4.))
    assert init_cfg == dict(
        type='Constant',
        val=1,
        bias=2,
        layer=['Conv2d', 'Linear'],
        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))

    # test override key
    init_cfg = dict(
        type='Constant', val=5, bias=6, override=dict(name='conv2d_2'))
    initialize(foonet, init_cfg)
    assert not torch.equal(foonet.linear.weight,
                           torch.full(foonet.linear.weight.shape, 5.))
    assert not torch.equal(foonet.linear.bias,
                           torch.full(foonet.linear.bias.shape, 6.))
    assert not torch.equal(foonet.conv2d.weight,
                           torch.full(foonet.conv2d.weight.shape, 5.))
    assert not torch.equal(foonet.conv2d.bias,
                           torch.full(foonet.conv2d.bias.shape, 6.))
    assert torch.equal(foonet.conv2d_2.weight,
                       torch.full(foonet.conv2d_2.weight.shape, 5.))
    assert torch.equal(foonet.conv2d_2.bias,
                       torch.full(foonet.conv2d_2.bias.shape, 6.))
    assert init_cfg == dict(
        type='Constant', val=5, bias=6, override=dict(name='conv2d_2'))

    init_cfg = dict(
        type='Pretrained',
        checkpoint='modelA.pth',
        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))
    modelA = FooModule()
    constant_func = ConstantInit(val=1, bias=2, layer=['Conv2d', 'Linear'])
    modelA.apply(constant_func)
    with TemporaryDirectory():
        torch.save(modelA.state_dict(), 'modelA.pth')
        initialize(foonet, init_cfg)
        assert torch.equal(foonet.linear.weight,
                           torch.full(foonet.linear.weight.shape, 1.))
        assert torch.equal(foonet.linear.bias,
                           torch.full(foonet.linear.bias.shape, 2.))
        assert torch.equal(foonet.conv2d.weight,
                           torch.full(foonet.conv2d.weight.shape, 1.))
        assert torch.equal(foonet.conv2d.bias,
                           torch.full(foonet.conv2d.bias.shape, 2.))
        assert torch.equal(foonet.conv2d_2.weight,
                           torch.full(foonet.conv2d_2.weight.shape, 3.))
        assert torch.equal(foonet.conv2d_2.bias,
                           torch.full(foonet.conv2d_2.bias.shape, 4.))
    assert init_cfg == dict(
        type='Pretrained',
        checkpoint='modelA.pth',
        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))

    # test init_cfg type
    with pytest.raises(TypeError):
        init_cfg = 'init_cfg'
        initialize(foonet, init_cfg)

    # test override value type
    with pytest.raises(TypeError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            layer=['Conv2d', 'Linear'],
            override='conv')
        initialize(foonet, init_cfg)

    # test override name
    with pytest.raises(RuntimeError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            layer=['Conv2d', 'Linear'],
            override=dict(type='Constant', name='conv2d_3', val=3, bias=4))
        initialize(foonet, init_cfg)

    # test list override name
    with pytest.raises(RuntimeError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            layer=['Conv2d', 'Linear'],
            override=[
                dict(type='Constant', name='conv2d', val=3, bias=4),
                dict(type='Constant', name='conv2d_3', val=5, bias=6)
            ])
        initialize(foonet, init_cfg)

    # test override with args except type key
    with pytest.raises(ValueError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            override=dict(name='conv2d_2', val=3, bias=4))
        initialize(foonet, init_cfg)

    # test override without name
    with pytest.raises(ValueError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            override=dict(type='Constant', val=3, bias=4))
        initialize(foonet, init_cfg)