File size: 7,813 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
import torch.nn as nn

from mmcv.cnn import NonLocal1d, NonLocal2d, NonLocal3d
from mmcv.cnn.bricks.non_local import _NonLocalNd


def test_nonlocal():
    with pytest.raises(ValueError):
        # mode should be in ['embedded_gaussian', 'dot_product']
        _NonLocalNd(3, mode='unsupport_mode')

    # _NonLocalNd with zero initialization
    _NonLocalNd(3)
    _NonLocalNd(3, norm_cfg=dict(type='BN'))

    # _NonLocalNd without zero initialization
    _NonLocalNd(3, zeros_init=False)
    _NonLocalNd(3, norm_cfg=dict(type='BN'), zeros_init=False)


def test_nonlocal3d():
    # NonLocal3d with 'embedded_gaussian' mode
    imgs = torch.randn(2, 3, 10, 20, 20)
    nonlocal_3d = NonLocal3d(3)
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            # NonLocal is only implemented on gpu in parrots
            imgs = imgs.cuda()
            nonlocal_3d.cuda()
    out = nonlocal_3d(imgs)
    assert out.shape == imgs.shape

    # NonLocal3d with 'dot_product' mode
    nonlocal_3d = NonLocal3d(3, mode='dot_product')
    assert nonlocal_3d.mode == 'dot_product'
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            nonlocal_3d.cuda()
    out = nonlocal_3d(imgs)
    assert out.shape == imgs.shape

    # NonLocal3d with 'concatenation' mode
    nonlocal_3d = NonLocal3d(3, mode='concatenation')
    assert nonlocal_3d.mode == 'concatenation'
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            nonlocal_3d.cuda()
    out = nonlocal_3d(imgs)
    assert out.shape == imgs.shape

    # NonLocal3d with 'gaussian' mode
    nonlocal_3d = NonLocal3d(3, mode='gaussian')
    assert not hasattr(nonlocal_3d, 'phi')
    assert nonlocal_3d.mode == 'gaussian'
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            nonlocal_3d.cuda()
    out = nonlocal_3d(imgs)
    assert out.shape == imgs.shape

    # NonLocal3d with 'gaussian' mode and sub_sample
    nonlocal_3d = NonLocal3d(3, mode='gaussian', sub_sample=True)
    assert isinstance(nonlocal_3d.g, nn.Sequential) and len(nonlocal_3d.g) == 2
    assert isinstance(nonlocal_3d.g[1], nn.MaxPool3d)
    assert nonlocal_3d.g[1].kernel_size == (1, 2, 2)
    assert isinstance(nonlocal_3d.phi, nn.MaxPool3d)
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            nonlocal_3d.cuda()
    out = nonlocal_3d(imgs)
    assert out.shape == imgs.shape

    # NonLocal3d with 'dot_product' mode and sub_sample
    nonlocal_3d = NonLocal3d(3, mode='dot_product', sub_sample=True)
    for m in [nonlocal_3d.g, nonlocal_3d.phi]:
        assert isinstance(m, nn.Sequential) and len(m) == 2
        assert isinstance(m[1], nn.MaxPool3d)
        assert m[1].kernel_size == (1, 2, 2)
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            nonlocal_3d.cuda()
    out = nonlocal_3d(imgs)
    assert out.shape == imgs.shape


def test_nonlocal2d():
    # NonLocal2d with 'embedded_gaussian' mode
    imgs = torch.randn(2, 3, 20, 20)
    nonlocal_2d = NonLocal2d(3)
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            nonlocal_2d.cuda()
    out = nonlocal_2d(imgs)
    assert out.shape == imgs.shape

    # NonLocal2d with 'dot_product' mode
    imgs = torch.randn(2, 3, 20, 20)
    nonlocal_2d = NonLocal2d(3, mode='dot_product')
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            nonlocal_2d.cuda()
    out = nonlocal_2d(imgs)
    assert out.shape == imgs.shape

    # NonLocal2d with 'concatenation' mode
    imgs = torch.randn(2, 3, 20, 20)
    nonlocal_2d = NonLocal2d(3, mode='concatenation')
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            nonlocal_2d.cuda()
    out = nonlocal_2d(imgs)
    assert out.shape == imgs.shape

    # NonLocal2d with 'gaussian' mode
    imgs = torch.randn(2, 3, 20, 20)
    nonlocal_2d = NonLocal2d(3, mode='gaussian')
    assert not hasattr(nonlocal_2d, 'phi')
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            nonlocal_2d.cuda()
    out = nonlocal_2d(imgs)
    assert out.shape == imgs.shape

    # NonLocal2d with 'gaussian' mode and sub_sample
    nonlocal_2d = NonLocal2d(3, mode='gaussian', sub_sample=True)
    assert isinstance(nonlocal_2d.g, nn.Sequential) and len(nonlocal_2d.g) == 2
    assert isinstance(nonlocal_2d.g[1], nn.MaxPool2d)
    assert nonlocal_2d.g[1].kernel_size == (2, 2)
    assert isinstance(nonlocal_2d.phi, nn.MaxPool2d)
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            nonlocal_2d.cuda()
    out = nonlocal_2d(imgs)
    assert out.shape == imgs.shape

    # NonLocal2d with 'dot_product' mode and sub_sample
    nonlocal_2d = NonLocal2d(3, mode='dot_product', sub_sample=True)
    for m in [nonlocal_2d.g, nonlocal_2d.phi]:
        assert isinstance(m, nn.Sequential) and len(m) == 2
        assert isinstance(m[1], nn.MaxPool2d)
        assert m[1].kernel_size == (2, 2)
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            nonlocal_2d.cuda()
    out = nonlocal_2d(imgs)
    assert out.shape == imgs.shape


def test_nonlocal1d():
    # NonLocal1d with 'embedded_gaussian' mode
    imgs = torch.randn(2, 3, 20)
    nonlocal_1d = NonLocal1d(3)
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            nonlocal_1d.cuda()
    out = nonlocal_1d(imgs)
    assert out.shape == imgs.shape

    # NonLocal1d with 'dot_product' mode
    imgs = torch.randn(2, 3, 20)
    nonlocal_1d = NonLocal1d(3, mode='dot_product')
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            nonlocal_1d.cuda()
    out = nonlocal_1d(imgs)
    assert out.shape == imgs.shape

    # NonLocal1d with 'concatenation' mode
    imgs = torch.randn(2, 3, 20)
    nonlocal_1d = NonLocal1d(3, mode='concatenation')
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            nonlocal_1d.cuda()
    out = nonlocal_1d(imgs)
    assert out.shape == imgs.shape

    # NonLocal1d with 'gaussian' mode
    imgs = torch.randn(2, 3, 20)
    nonlocal_1d = NonLocal1d(3, mode='gaussian')
    assert not hasattr(nonlocal_1d, 'phi')
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            nonlocal_1d.cuda()
    out = nonlocal_1d(imgs)
    assert out.shape == imgs.shape

    # NonLocal1d with 'gaussian' mode and sub_sample
    nonlocal_1d = NonLocal1d(3, mode='gaussian', sub_sample=True)
    assert isinstance(nonlocal_1d.g, nn.Sequential) and len(nonlocal_1d.g) == 2
    assert isinstance(nonlocal_1d.g[1], nn.MaxPool1d)
    assert nonlocal_1d.g[1].kernel_size == 2
    assert isinstance(nonlocal_1d.phi, nn.MaxPool1d)
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            nonlocal_1d.cuda()
    out = nonlocal_1d(imgs)
    assert out.shape == imgs.shape

    # NonLocal1d with 'dot_product' mode and sub_sample
    nonlocal_1d = NonLocal1d(3, mode='dot_product', sub_sample=True)
    for m in [nonlocal_1d.g, nonlocal_1d.phi]:
        assert isinstance(m, nn.Sequential) and len(m) == 2
        assert isinstance(m[1], nn.MaxPool1d)
        assert m[1].kernel_size == 2
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            nonlocal_1d.cuda()
    out = nonlocal_1d(imgs)
    assert out.shape == imgs.shape