Spaces:
Running
on
L40S
Running
on
L40S
File size: 7,635 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import argparse
import json
import os
import os.path as osp
import time
import warnings
from collections import OrderedDict
from unittest.mock import patch
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
from torch.optim import SGD
from torch.utils.data import DataLoader
import mmcv
from mmcv.runner import build_runner
from mmcv.utils import get_logger
def parse_args():
parser = argparse.ArgumentParser(description='Visualize the given config'
'of learning rate and momentum, and this'
'script will overwrite the log_config')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--work-dir', default='./', help='the dir to save logs and models')
parser.add_argument(
'--num-iters', default=300, help='The number of iters per epoch')
parser.add_argument(
'--num-epochs', default=300, help='Only used in EpochBasedRunner')
parser.add_argument(
'--window-size',
default='12*14',
help='Size of the window to display images, in format of "$W*$H".')
parser.add_argument(
'--log-interval', default=10, help='The interval of TextLoggerHook')
args = parser.parse_args()
return args
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 1, 1)
def train_step(self, *args, **kwargs):
return dict()
def val_step(self, *args, **kwargs):
return dict()
def iter_train(self, data_loader, **kwargs):
self.mode = 'train'
self.data_loader = data_loader
self.call_hook('before_train_iter')
self.call_hook('after_train_iter')
self._inner_iter += 1
self._iter += 1
def epoch_train(self, data_loader, **kwargs):
self.model.train()
self.mode = 'train'
self.data_loader = data_loader
self._max_iters = self._max_epochs * len(self.data_loader)
self.call_hook('before_train_epoch')
for i, data_batch in enumerate(self.data_loader):
self._inner_iter = i
self.call_hook('before_train_iter')
self.call_hook('after_train_iter')
self._iter += 1
self.call_hook('after_train_epoch')
self._epoch += 1
def log(self, runner):
cur_iter = self.get_iter(runner, inner_iter=True)
log_dict = OrderedDict(
mode=self.get_mode(runner),
epoch=self.get_epoch(runner),
iter=cur_iter)
# only record lr of the first param group
cur_lr = runner.current_lr()
if isinstance(cur_lr, list):
log_dict['lr'] = cur_lr[0]
else:
assert isinstance(cur_lr, dict)
log_dict['lr'] = {}
for k, lr_ in cur_lr.items():
assert isinstance(lr_, list)
log_dict['lr'].update({k: lr_[0]})
cur_momentum = runner.current_momentum()
if isinstance(cur_momentum, list):
log_dict['momentum'] = cur_momentum[0]
else:
assert isinstance(cur_momentum, dict)
log_dict['momentum'] = {}
for k, lr_ in cur_momentum.items():
assert isinstance(lr_, list)
log_dict['momentum'].update({k: lr_[0]})
log_dict = dict(log_dict, **runner.log_buffer.output)
self._log_info(log_dict, runner)
self._dump_log(log_dict, runner)
return log_dict
@patch('torch.cuda.is_available', lambda: False)
@patch('mmcv.runner.EpochBasedRunner.train', epoch_train)
@patch('mmcv.runner.IterBasedRunner.train', iter_train)
@patch('mmcv.runner.hooks.TextLoggerHook.log', log)
def run(cfg, logger):
momentum_config = cfg.get('momentum_config')
lr_config = cfg.get('lr_config')
model = SimpleModel()
optimizer = SGD(model.parameters(), 0.1, momentum=0.8)
cfg.work_dir = cfg.get('work_dir', './')
workflow = [('train', 1)]
if cfg.get('runner') is None:
cfg.runner = {
'type': 'EpochBasedRunner',
'max_epochs': cfg.get('total_epochs', cfg.num_epochs)
}
warnings.warn(
'config is now expected to have a `runner` section, '
'please set `runner` in your config.', UserWarning)
batch_size = 1
data = cfg.get('data')
if data:
batch_size = data.get('samples_per_gpu')
fake_dataloader = DataLoader(
list(range(cfg.num_iters)), batch_size=batch_size)
runner = build_runner(
cfg.runner,
default_args=dict(
model=model,
batch_processor=None,
optimizer=optimizer,
work_dir=cfg.work_dir,
logger=logger,
meta=None))
log_config = dict(
interval=cfg.log_interval, hooks=[
dict(type='TextLoggerHook'),
])
runner.register_training_hooks(lr_config, log_config=log_config)
runner.register_momentum_hook(momentum_config)
runner.run([fake_dataloader], workflow)
def plot_lr_curve(json_file, cfg):
data_dict = dict(LearningRate=[], Momentum=[])
assert os.path.isfile(json_file)
with open(json_file) as f:
for line in f:
log = json.loads(line.strip())
data_dict['LearningRate'].append(log['lr'])
data_dict['Momentum'].append(log['momentum'])
wind_w, wind_h = (int(size) for size in cfg.window_size.split('*'))
# if legend is None, use {filename}_{key} as legend
fig, axes = plt.subplots(2, 1, figsize=(wind_w, wind_h))
plt.subplots_adjust(hspace=0.5)
font_size = 20
for index, (updater_type, data_list) in enumerate(data_dict.items()):
ax = axes[index]
if cfg.runner.type == 'EpochBasedRunner':
ax.plot(data_list, linewidth=1)
ax.xaxis.tick_top()
ax.set_xlabel('Iters', fontsize=font_size)
ax.xaxis.set_label_position('top')
sec_ax = ax.secondary_xaxis(
'bottom',
functions=(lambda x: x / cfg.num_iters * cfg.log_interval,
lambda y: y * cfg.num_iters / cfg.log_interval))
sec_ax.tick_params(labelsize=font_size)
sec_ax.set_xlabel('Epochs', fontsize=font_size)
else:
# plt.subplot(2, 1, index + 1)
x_list = np.arange(len(data_list)) * cfg.log_interval
ax.plot(x_list, data_list)
ax.set_xlabel('Iters', fontsize=font_size)
ax.set_ylabel(updater_type, fontsize=font_size)
if updater_type == 'LearningRate':
if cfg.get('lr_config'):
title = cfg.lr_config.type
else:
title = 'No learning rate scheduler'
else:
if cfg.get('momentum_config'):
title = cfg.momentum_config.type
else:
title = 'No momentum scheduler'
ax.set_title(title, fontsize=font_size)
ax.grid()
# set tick font size
ax.tick_params(labelsize=font_size)
save_path = osp.join(cfg.work_dir, 'visualization-result')
plt.savefig(save_path)
print(f'The learning rate graph is saved at {save_path}.png')
plt.show()
def main():
args = parse_args()
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
cfg = mmcv.Config.fromfile(args.config)
cfg['num_iters'] = args.num_iters
cfg['num_epochs'] = args.num_epochs
cfg['log_interval'] = args.log_interval
cfg['window_size'] = args.window_size
log_path = osp.join(cfg.get('work_dir', './'), f'{timestamp}.log')
json_path = log_path + '.json'
logger = get_logger('mmcv', log_path)
run(cfg, logger)
plot_lr_curve(json_path, cfg)
if __name__ == '__main__':
main()
|