File size: 29,842 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
import colorsys
import os
from collections import defaultdict
from contextlib import contextmanager
from functools import partial
from pathlib import Path

import mmcv
import numpy as np
from mmcv import Timer
from scipy import interpolate

from detrsmpl.core.post_processing import build_post_processing

try:
    from typing import Literal
except ImportError:
    from typing_extensions import Literal


def xyxy2xywh(bbox_xyxy):
    """Transform the bbox format from x1y1x2y2 to xywh.

    Args:
        bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5). (left, top, right, bottom, [score])

    Returns:
        np.ndarray: Bounding boxes (with scores),
          shaped (n, 4) or (n, 5). (left, top, width, height, [score])
    """
    if not isinstance(bbox_xyxy, np.ndarray):
        raise TypeError(
            f'Input type is {type(bbox_xyxy)}, which should be numpy.ndarray.')
    bbox_xywh = bbox_xyxy.copy()
    bbox_xywh[..., 2] = bbox_xywh[..., 2] - bbox_xywh[..., 0]
    bbox_xywh[..., 3] = bbox_xywh[..., 3] - bbox_xywh[..., 1]

    return bbox_xywh


def xywh2xyxy(bbox_xywh):
    """Transform the bbox format from xywh to x1y1x2y2.

    Args:
        bbox_xywh (np.ndarray): Bounding boxes (with scores), shaped
        (n, 4) or (n, 5). (left, top, width, height, [score])

    Returns:
        np.ndarray: Bounding boxes (with scores),
          shaped (n, 4) or (n, 5). (left, top, right, bottom, [score])
    """
    if not isinstance(bbox_xywh, np.ndarray):
        raise TypeError(
            f'Input type is {type(bbox_xywh)}, which should be numpy.ndarray.')
    bbox_xyxy = bbox_xywh.copy()
    bbox_xyxy[..., 2] = bbox_xyxy[..., 2] + bbox_xyxy[..., 0] - 1
    bbox_xyxy[..., 3] = bbox_xyxy[..., 3] + bbox_xyxy[..., 1] - 1

    return bbox_xyxy


def box2cs(bbox_xywh, aspect_ratio=1.0, bbox_scale_factor=1.25):
    """Convert xywh coordinates to center and scale.

    Args:
    bbox_xywh (numpy.ndarray): the height of the bbox_xywh
    aspect_ratio (int, optional): Defaults to 1.0
    bbox_scale_factor (float, optional): Defaults to 1.25
    Returns:
        numpy.ndarray: center of the bbox
        numpy.ndarray: the scale of the bbox w & h
    """
    if not isinstance(bbox_xywh, np.ndarray):
        raise TypeError(
            f'Input type is {type(bbox_xywh)}, which should be numpy.ndarray.')

    bbox_xywh = bbox_xywh.copy()
    pixel_std = 1
    center = np.stack([
        bbox_xywh[..., 0] + bbox_xywh[..., 2] * 0.5,
        bbox_xywh[..., 1] + bbox_xywh[..., 3] * 0.5
    ], -1)

    mask_h = bbox_xywh[..., 2] > aspect_ratio * bbox_xywh[..., 3]
    mask_w = ~mask_h

    bbox_xywh[mask_h, 3] = bbox_xywh[mask_h, 2] / aspect_ratio
    bbox_xywh[mask_w, 2] = bbox_xywh[mask_w, 3] * aspect_ratio
    scale = np.stack([
        bbox_xywh[..., 2] * 1.0 / pixel_std,
        bbox_xywh[..., 3] * 1.0 / pixel_std
    ], -1)
    scale = scale * bbox_scale_factor

    return center, scale


def convert_crop_cam_to_orig_img(cam: np.ndarray,
                                 bbox: np.ndarray,
                                 img_width: int,
                                 img_height: int,
                                 aspect_ratio: float = 1.0,
                                 bbox_scale_factor: float = 1.25,
                                 bbox_format: Literal['xyxy', 'xywh',
                                                      'cs'] = 'xyxy'):
    """This function is modified from [VIBE](https://github.com/
    mkocabas/VIBE/blob/master/lib/utils/demo_utils.py#L242-L259). Original
    license please see docs/additional_licenses.md.

    Args:
        cam (np.ndarray): cam (ndarray, shape=(frame, 3) or
        (frame,num_person, 3)):
        weak perspective camera in cropped img coordinates
        bbox (np.ndarray): bbox coordinates
        img_width (int): original image width
        img_height (int): original image height
        aspect_ratio (float, optional):  Defaults to 1.0.
        bbox_scale_factor (float, optional):  Defaults to 1.25.
        bbox_format (Literal['xyxy', 'xywh', 'cs']): Defaults to 'xyxy'.
            'xyxy' means the left-up point and right-bottomn point of the
            bbox.
            'xywh' means the left-up point and the width and height of the
            bbox.
            'cs' means the center of the bbox (x,y) and the scale of the
            bbox w & h.
    Returns:
        orig_cam: shape = (frame, 4) or (frame, num_person, 4)
    """
    if not isinstance(bbox, np.ndarray):
        raise TypeError(
            f'Input type is {type(bbox)}, which should be numpy.ndarray.')
    bbox = bbox.copy()
    if bbox_format == 'xyxy':
        bbox_xywh = xyxy2xywh(bbox)
        center, scale = box2cs(bbox_xywh, aspect_ratio, bbox_scale_factor)
        bbox_cs = np.concatenate([center, scale], axis=-1)
    elif bbox_format == 'xywh':
        center, scale = box2cs(bbox, aspect_ratio, bbox_scale_factor)
        bbox_cs = np.concatenate([center, scale], axis=-1)
    elif bbox_format == 'cs':
        bbox_cs = bbox
    else:
        raise ValueError('Only supports the format of `xyxy`, `cs` and `xywh`')

    cx, cy, h = bbox_cs[..., 0], bbox_cs[..., 1], bbox_cs[..., 2] + 1e-6
    hw, hh = img_width / 2., img_height / 2.
    sx = cam[..., 0] * (1. / (img_width / h))
    sy = cam[..., 0] * (1. / (img_height / h))
    tx = ((cx - hw) / hw / (sx + 1e-6)) + cam[..., 1]
    ty = ((cy - hh) / hh / (sy + 1e-6)) + cam[..., 2]

    orig_cam = np.stack([sx, sy, tx, ty], axis=-1)
    return orig_cam


def convert_bbox_to_intrinsic(bboxes: np.ndarray,
                              img_width: int = 224,
                              img_height: int = 224,
                              bbox_scale_factor: float = 1.25,
                              bbox_format: Literal['xyxy', 'xywh'] = 'xyxy'):
    """Convert bbox to intrinsic parameters.

    Args:
        bbox (np.ndarray): (frame, num_person, 4), (frame, 4), or (4,)
        img_width (int): image width of training data.
        img_height (int): image height of training data.
        bbox_scale_factor (float): scale factor for expanding the bbox.
        bbox_format (Literal['xyxy', 'xywh'] ): 'xyxy' means the left-up point
            and right-bottomn point of the bbox.
            'xywh' means the left-up point and the width and height of the
            bbox.
    Returns:
        np.ndarray: (frame, num_person, 3, 3), (frame, 3, 3) or (3,3)
    """
    if not isinstance(bboxes, np.ndarray):
        raise TypeError(
            f'Input type is {type(bboxes)}, which should be numpy.ndarray.')
    assert bbox_format in ['xyxy', 'xywh']

    if bbox_format == 'xyxy':
        bboxes = xyxy2xywh(bboxes)

    center_x = bboxes[..., 0] + bboxes[..., 2] / 2.0
    center_y = bboxes[..., 1] + bboxes[..., 3] / 2.0

    W = np.max(bboxes[..., 2:], axis=-1) * bbox_scale_factor

    num_frame = bboxes.shape[0]
    if bboxes.ndim == 3:
        num_person = bboxes.shape[1]
        Ks = np.zeros((num_frame, num_person, 3, 3))
    elif bboxes.ndim == 2:
        Ks = np.zeros((num_frame, 3, 3))
    elif bboxes.ndim == 1:
        Ks = np.zeros((3, 3))
    else:
        raise ValueError('Wrong input bboxes shape {bboxes.shape}')

    Ks[..., 0, 0] = W / img_width
    Ks[..., 1, 1] = W / img_height
    Ks[..., 0, 2] = center_x - W / 2.0
    Ks[..., 1, 2] = center_y - W / 2.0
    Ks[..., 2, 2] = 1
    return Ks


def get_default_hmr_intrinsic(num_frame=1,
                              focal_length=1000,
                              det_width=224,
                              det_height=224) -> np.ndarray:
    """Get default hmr intrinsic, defined by how you trained.

    Args:
        num_frame (int, optional): num of frames. Defaults to 1.
        focal_length (int, optional): defined same as your training.
            Defaults to 1000.
        det_width (int, optional): the size you used to detect.
            Defaults to 224.
        det_height (int, optional): the size you used to detect.
            Defaults to 224.

    Returns:
        np.ndarray: shape of (N, 3, 3)
    """
    K = np.zeros((num_frame, 3, 3))
    K[:, 0, 0] = focal_length
    K[:, 1, 1] = focal_length
    K[:, 0, 2] = det_width / 2
    K[:, 1, 2] = det_height / 2
    K[:, 2, 2] = 1
    return K


def convert_kp2d_to_bbox(
        kp2d: np.ndarray,
        bbox_format: Literal['xyxy', 'xywh'] = 'xyxy') -> np.ndarray:
    """Convert kp2d to bbox.

    Args:
        kp2d (np.ndarray):  shape should be (num_frame, num_points, 2/3)
            or (num_frame, num_person, num_points, 2/3).
        bbox_format (Literal['xyxy', 'xywh'], optional): Defaults to 'xyxy'.

    Returns:
        np.ndarray: shape will be (num_frame, num_person, 4)
    """
    assert bbox_format in ['xyxy', 'xywh']
    if kp2d.ndim == 2:
        kp2d = kp2d[None, None]
    elif kp2d.ndim == 3:
        kp2d = kp2d[:, None]
    num_frame, num_person, _, _ = kp2d.shape
    x1 = np.max(kp2d[..., 0], axis=-2)
    y1 = np.max(kp2d[..., 1], axis=-2)
    x2 = np.max(kp2d[..., 2], axis=-2)
    y2 = np.max(kp2d[..., 3], axis=-2)
    bbox = np.concatenate([x1, y1, x2, y2], axis=-1)
    assert bbox.shape == (num_frame, num_person, 4)
    if bbox_format == 'xywh':
        bbox = xyxy2xywh(bbox)
    return bbox


def convert_verts_to_cam_coord(verts,
                               pred_cams,
                               bboxes_xy,
                               focal_length=5000.,
                               bbox_scale_factor=1.25,
                               bbox_format='xyxy'):
    """Convert vertices from the world coordinate to camera coordinate.

    Args:
        verts ([np.ndarray]): The vertices in the world coordinate.
            The shape is (frame,num_person,6890,3), (frame,6890,3),
            or (6890,3).
        pred_cams ([np.ndarray]): Camera parameters estimated by HMR or SPIN.
            The shape is (frame,num_person,3), (frame,3), or (3,).
        bboxes_xy ([np.ndarray]): (frame, num_person, 4|5), (frame, 4|5),
            or (4|5,)
        focal_length ([float],optional): Defined same as your training.
        bbox_scale_factor (float): scale factor for expanding the bbox.
        bbox_format (Literal['xyxy', 'xywh'] ): 'xyxy' means the left-up point
            and right-bottomn point of the bbox.
            'xywh' means the left-up point and the width and height of the
            bbox.
    Returns:
        np.ndarray: The vertices in the camera coordinate.
            The shape is (frame,num_person,6890,3) or (frame,6890,3).
        np.ndarray: The intrinsic parameters of the pred_cam.
            The shape is (num_frame, 3, 3).
    """
    K0 = get_default_hmr_intrinsic(focal_length=focal_length,
                                   det_height=224,
                                   det_width=224)
    K1 = convert_bbox_to_intrinsic(bboxes_xy,
                                   bbox_scale_factor=bbox_scale_factor,
                                   bbox_format=bbox_format)
    # K1K0(RX+T)-> K0(K0_inv K1K0)
    Ks = np.linalg.inv(K0) @ K1 @ K0
    # convert vertices from world to camera
    cam_trans = np.concatenate([
        pred_cams[..., [1]], pred_cams[..., [2]], 2 * focal_length /
        (224 * pred_cams[..., [0]] + 1e-9)
    ], -1)
    verts = verts + cam_trans[..., None, :]
    if verts.ndim == 4:
        verts = np.einsum('fnij,fnkj->fnki', Ks, verts)
    elif verts.ndim == 3:
        verts = np.einsum('fij,fkj->fki', Ks, verts)
    elif verts.ndim == 2:
        verts = np.einsum('fij,fkj->fki', Ks, verts[None])
    return verts, K0


def smooth_process(x,
                   smooth_type='savgol',
                   cfg_base_dir='configs/_base_/post_processing/'):
    """Smooth the array with the specified smoothing type.

    Args:
        x (np.ndarray): Shape should be (frame,num_person,K,C)
            or (frame,K,C).
        smooth_type (str, optional): Smooth type.
            choose in ['oneeuro', 'gaus1d', 'savgol','smoothnet',
                'smoothnet_windowsize8','smoothnet_windowsize16',
                'smoothnet_windowsize32','smoothnet_windowsize64'].
            Defaults to 'savgol'. 'smoothnet' is default with windowsize=8.
        cfg_base_dir (str, optional): Config base dir,
                            default configs/_base_/post_processing/
    Raises:
        ValueError: check the input smoothing type.

    Returns:
        np.ndarray: Smoothed data. The shape should be
            (frame,num_person,K,C) or (frame,K,C).
    """
    if smooth_type == 'smoothnet':
        smooth_type = 'smoothnet_windowsize8'

    assert smooth_type in [
        'oneeuro', 'gaus1d', 'savgol', 'smoothnet_windowsize8',
        'smoothnet_windowsize16', 'smoothnet_windowsize32',
        'smoothnet_windowsize64'
    ]

    cfg = os.path.join(cfg_base_dir, smooth_type + '.py')
    if isinstance(cfg, str):
        cfg = mmcv.Config.fromfile(cfg)
    elif not isinstance(cfg, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(cfg)}')

    x = x.copy()

    assert x.ndim == 3 or x.ndim == 4

    smooth_func = build_post_processing(dict(cfg['smooth_cfg']))

    if x.ndim == 4:
        for i in range(x.shape[1]):
            x[:, i] = smooth_func(x[:, i])
    elif x.ndim == 3:
        x = smooth_func(x)

    return x


def speed_up_process(x,
                     speed_up_type='deciwatch',
                     cfg_base_dir='configs/_base_/post_processing/'):
    """Speed up the process with the specified speed up type.

    Args:
        x (np.ndarray): Shape should be (frame,num_person,K,C)
            or (frame,K,C).
        speed_up_type (str, optional): Speed up type.
            choose in ['deciwatch',
                        'deciwatch_interval5_q1',
                        'deciwatch_interval5_q2',
                        'deciwatch_interval5_q3',
                        'deciwatch_interval5_q4',
                        'deciwatch_interval5_q5',
                        'deciwatch_interval10_q1',
                        'deciwatch_interval10_q2',
                        'deciwatch_interval10_q3',
                        'deciwatch_interval10_q4',
                        'deciwatch_interval10_q5',]. Defaults to 'deciwatch'.
        cfg_base_dir (str, optional): Config base dir.
                                Defaults to 'configs/_base_/post_processing/'

    Raises:
        ValueError: check the input speed up type.

    Returns:
        np.ndarray: Completed data. The shape should be
            (frame,num_person,K,C) or (frame,K,C).
    """

    if speed_up_type == 'deciwatch':
        speed_up_type = 'deciwatch_interval5_q3'
    assert speed_up_type in [
        'deciwatch_interval5_q1',
        'deciwatch_interval5_q2',
        'deciwatch_interval5_q3',
        'deciwatch_interval5_q4',
        'deciwatch_interval5_q5',
        'deciwatch_interval10_q1',
        'deciwatch_interval10_q2',
        'deciwatch_interval10_q3',
        'deciwatch_interval10_q4',
        'deciwatch_interval10_q5',
    ]

    cfg = os.path.join(cfg_base_dir, speed_up_type + '.py')
    if isinstance(cfg, str):
        cfg = mmcv.Config.fromfile(cfg)
    elif not isinstance(cfg, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(cfg)}')
    x = x.clone()

    assert x.ndim == 4 or x.ndim == 5

    cfg_dict = cfg['speed_up_cfg']
    cfg_dict['device'] = x.device

    speed_up_func = build_post_processing(cfg_dict)

    if x.ndim == 5:
        for i in range(x.shape[1]):
            x[:, i] = speed_up_func(x[:, i])
    elif x.ndim == 4:
        x = speed_up_func(x)

    return np.array(x.cpu())


def get_speed_up_interval(speed_up_type,
                          cfg_base_dir='configs/_base_/post_processing/'):
    """Get the interval of specific speed up type.

    Args:
        speed_up_type (str, optional): Speed up type.
            choose in ['deciwatch',
                        'deciwatch_interval5_q1',
                        'deciwatch_interval5_q2',
                        'deciwatch_interval5_q3',
                        'deciwatch_interval5_q4',
                        'deciwatch_interval5_q5',
                        'deciwatch_interval10_q1',
                        'deciwatch_interval10_q2',
                        'deciwatch_interval10_q3',
                        'deciwatch_interval10_q4',
                        'deciwatch_interval10_q5',]. Defaults to 'deciwatch'.
        cfg_base_dir (str, optional): Config base dir,
                            default configs/_base_/post_processing/

    Raises:
        ValueError: check the input speed up type.

    Returns:
        int: speed up interval
    """

    if speed_up_type == 'deciwatch':
        speed_up_type = 'deciwatch_interval5_q3'
    assert speed_up_type in [
        'deciwatch_interval5_q1',
        'deciwatch_interval5_q2',
        'deciwatch_interval5_q3',
        'deciwatch_interval5_q4',
        'deciwatch_interval5_q5',
        'deciwatch_interval10_q1',
        'deciwatch_interval10_q2',
        'deciwatch_interval10_q3',
        'deciwatch_interval10_q4',
        'deciwatch_interval10_q5',
    ]
    cfg = os.path.join(cfg_base_dir, speed_up_type + '.py')
    if isinstance(cfg, str):
        cfg = mmcv.Config.fromfile(cfg)
    elif not isinstance(cfg, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(cfg)}')

    return cfg['speed_up_cfg']['interval']


def speed_up_interpolate(selected_frames, speed_up_frames, smpl_poses,
                         smpl_betas, pred_cams, bboxes_xyxy):
    """Interpolate smpl_betas, pred_cams, and bboxes_xyxyx for speed up.

    Args:
        selected_frames (np.ndarray): Shape should be (selected frame number).
        speed_up_frames (int): Total speed up frame number
        smpl_poses (np.ndarray): selected frame smpl poses parameter
        smpl_betas (np.ndarray): selected frame smpl shape paeameter
        pred_cams (np.ndarray): selected frame camera parameter
        bboxes_xyxy (np.ndarray): selected frame bbox

    Returns:
        smpl_poses (np.ndarray): interpolated frame smpl poses parameter
        smpl_betas (np.ndarray): interpolated frame smpl shape paeameter
        pred_cams (np.ndarray): interpolated frame camera parameter
        bboxes_xyxy (np.ndarray): interpolated frame bbox
    """
    selected_frames = selected_frames[selected_frames <= speed_up_frames]
    pred_cams[:speed_up_frames, :] = interpolate.interp1d(
        selected_frames, pred_cams[selected_frames, :], kind='linear',
        axis=0)(np.arange(0, max(selected_frames)))
    bboxes_xyxy[:speed_up_frames, :] = interpolate.interp1d(
        selected_frames,
        bboxes_xyxy[selected_frames, :],
        kind='linear',
        axis=0)(np.arange(0, max(selected_frames)))
    smpl_betas[:speed_up_frames, :] = interpolate.interp1d(
        selected_frames, smpl_betas[selected_frames, :], kind='linear',
        axis=0)(np.arange(0, max(selected_frames)))

    return smpl_poses, smpl_betas, pred_cams, bboxes_xyxy


def process_mmtracking_results(mmtracking_results,
                               max_track_id,
                               bbox_thr=None):
    """Process mmtracking results.

    Args:
        mmtracking_results ([list]): mmtracking_results.
        bbox_thr (float): threshold for bounding boxes.
        max_track_id (int): the maximum track id.
    Returns:
        person_results ([list]): a list of tracked bounding boxes
        max_track_id (int): the maximum track id.
        instance_num (int): the number of instance.
    """
    person_results = []
    # 'track_results' is changed to 'track_bboxes'
    # in https://github.com/open-mmlab/mmtracking/pull/300
    if 'track_bboxes' in mmtracking_results:
        tracking_results = mmtracking_results['track_bboxes'][0]
    elif 'track_results' in mmtracking_results:
        tracking_results = mmtracking_results['track_results'][0]

    tracking_results = np.array(tracking_results)

    if bbox_thr is not None:
        assert tracking_results.shape[-1] == 6
        valid_idx = np.where(tracking_results[:, 5] > bbox_thr)[0]
        tracking_results = tracking_results[valid_idx]

    for track in tracking_results:
        person = {}
        person['track_id'] = int(track[0])
        if max_track_id < int(track[0]):
            max_track_id = int(track[0])
        person['bbox'] = track[1:]
        person_results.append(person)
    person_results = sorted(person_results, key=lambda x: x.get('track_id', 0))
    instance_num = len(person_results)
    return person_results, max_track_id, instance_num


def process_mmdet_results(mmdet_results, cat_id=1, bbox_thr=None):
    """Process mmdet results, and return a list of bboxes.

    Args:
        mmdet_results (list|tuple): mmdet results.
        bbox_thr (float): threshold for bounding boxes.
        cat_id (int): category id (default: 1 for human)

    Returns:
        person_results (list): a list of detected bounding boxes
    """
    if isinstance(mmdet_results, tuple):
        det_results = mmdet_results[0]
    else:
        det_results = mmdet_results

    bboxes = det_results[cat_id - 1]

    person_results = []
    bboxes = np.array(bboxes)

    if bbox_thr is not None:
        assert bboxes.shape[-1] == 5
        valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0]
        bboxes = bboxes[valid_idx]

    for bbox in bboxes:
        person = {}
        person['bbox'] = bbox
        person_results.append(person)

    return person_results


def prepare_frames(input_path=None):
    """Prepare frames from input_path.

    Args:
        input_path (str, optional): Defaults to None.

    Raises:
        ValueError: check the input path.

    Returns:
        List[np.ndarray]: prepared frames
    """
    if Path(input_path).is_file():
        img_list = [mmcv.imread(input_path)]
        if img_list[0] is None:
            video = mmcv.VideoReader(input_path)
            assert video.opened, f'Failed to load file {input_path}'
            img_list = list(video)
    elif Path(input_path).is_dir():
        # input_type = 'folder'
        file_list = [
            os.path.join(input_path, fn) for fn in os.listdir(input_path)
            if fn.lower().endswith(('.png', '.jpg'))
        ]
        file_list.sort()
        img_list = [mmcv.imread(img_path) for img_path in file_list]
        assert len(img_list), f'Failed to load image from {input_path}'
    else:
        raise ValueError('Input path should be an file or folder.'
                         f' Got invalid input path: {input_path}')
    return img_list


def extract_feature_sequence(extracted_results,
                             frame_idx,
                             causal,
                             seq_len,
                             step=1):
    """Extract the target frame from person results, and pad the sequence to a
    fixed length.

    Args:
        extracted_results (List[List[Dict]]): Multi-frame feature extraction
            results stored in a nested list. Each element of the outer list
            is the feature extraction results of a single frame, and each
            element of the inner list is the feature information of one person,
            which contains:
                features (ndarray): extracted features
                track_id (int): unique id of each person, required when
                    ``with_track_id==True```
                bbox ((4, ) or (5, )): left, right, top, bottom, [score]
        frame_idx (int): The index of the frame in the original video.
        causal (bool): If True, the target frame is the first frame in
            a sequence. Otherwise, the target frame is in the middle of a
            sequence.
        seq_len (int): The number of frames in the input sequence.
        step (int): Step size to extract frames from the video.

    Returns:
        List[List[Dict]]: Multi-frame feature extraction results stored in a
            nested list with a length of seq_len.
        int: The target frame index in the padded sequence.
    """

    if causal:
        frames_left = 0
        frames_right = seq_len - 1
    else:
        frames_left = (seq_len - 1) // 2
        frames_right = frames_left
    num_frames = len(extracted_results)

    # get the padded sequence
    pad_left = max(0, frames_left - frame_idx // step)
    pad_right = max(0, frames_right - (num_frames - 1 - frame_idx) // step)
    start = max(frame_idx % step, frame_idx - frames_left * step)
    end = min(num_frames - (num_frames - 1 - frame_idx) % step,
              frame_idx + frames_right * step + 1)
    extracted_results_seq = [extracted_results[0]] * pad_left + \
        extracted_results[start:end:step] + [extracted_results[-1]] * pad_right
    return extracted_results_seq


def get_different_colors(number_of_colors,
                         flag=0,
                         alpha: float = 1.0,
                         mode: str = 'bgr',
                         int_dtype: bool = True):
    """Get a numpy of colors of shape (N, 3)."""
    mode = mode.lower()
    assert set(mode).issubset({'r', 'g', 'b', 'a'})
    nst0 = np.random.get_state()
    np.random.seed(flag)
    colors = []
    for i in np.arange(0., 360., 360. / number_of_colors):
        hue = i / 360.
        lightness = (50 + np.random.rand() * 10) / 100.
        saturation = (90 + np.random.rand() * 10) / 100.
        colors.append(colorsys.hls_to_rgb(hue, lightness, saturation))
    colors_np = np.asarray(colors)
    if int_dtype:
        colors_bgr = (255 * colors_np).astype(np.uint8)
    else:
        colors_bgr = colors_np.astype(np.float32)
    # recover the random state
    np.random.set_state(nst0)
    color_dict = {}
    if 'a' in mode:
        color_dict['a'] = np.ones((colors_bgr.shape[0], 3)) * alpha
    color_dict['b'] = colors_bgr[:, 0:1]
    color_dict['g'] = colors_bgr[:, 1:2]
    color_dict['r'] = colors_bgr[:, 2:3]
    colors_final = []
    for channel in mode:
        colors_final.append(color_dict[channel])
    colors_final = np.concatenate(colors_final, -1)
    return colors_final


class RunningAverage():
    r"""A helper class to calculate running average in a sliding window.

    Args:
        window (int): The size of the sliding window.
    """
    def __init__(self, window: int = 1):
        self.window = window
        self._data = []

    def update(self, value):
        """Update a new data sample."""
        self._data.append(value)
        self._data = self._data[-self.window:]

    def average(self):
        """Get the average value of current window."""
        return np.mean(self._data)


class StopWatch:
    r"""A helper class to measure FPS and detailed time consuming of each phase
    in a video processing loop or similar scenarios.

    Args:
        window (int): The sliding window size to calculate the running average
            of the time consuming.

    Example:
        >>> from mmpose.utils import StopWatch
        >>> import time
        >>> stop_watch = StopWatch(window=10)
        >>> with stop_watch.timeit('total'):
        >>>     time.sleep(0.1)
        >>>     # 'timeit' support nested use
        >>>     with stop_watch.timeit('phase1'):
        >>>         time.sleep(0.1)
        >>>     with stop_watch.timeit('phase2'):
        >>>         time.sleep(0.2)
        >>>     time.sleep(0.2)
        >>> report = stop_watch.report()
    """
    def __init__(self, window=1):
        self.window = window
        self._record = defaultdict(partial(RunningAverage, window=self.window))
        self._timer_stack = []

    @contextmanager
    def timeit(self, timer_name='_FPS_'):
        """Timing a code snippet with an assigned name.

        Args:
            timer_name (str): The unique name of the interested code snippet to
                handle multiple timers and generate reports. Note that '_FPS_'
                is a special key that the measurement will be in `fps` instead
                of `millisecond`. Also see `report` and `report_strings`.
                Default: '_FPS_'.
        Note:
            This function should always be used in a `with` statement, as shown
            in the example.
        """
        self._timer_stack.append((timer_name, Timer()))
        try:
            yield
        finally:
            timer_name, timer = self._timer_stack.pop()
            self._record[timer_name].update(timer.since_start())

    def report(self, key=None):
        """Report timing information.

        Returns:
            dict: The key is the timer name and the value is the \
                corresponding average time consuming.
        """
        result = {
            name: r.average() * 1000.
            for name, r in self._record.items()
        }

        if '_FPS_' in result:
            result['_FPS_'] = 1000. / result.pop('_FPS_')

        if key is None:
            return result
        return result[key]

    def report_strings(self):
        """Report timing information in texture strings.

        Returns:
            list(str): Each element is the information string of a timed \
                event, in format of '{timer_name}: {time_in_ms}'. \
                Specially, if timer_name is '_FPS_', the result will \
                be converted to fps.
        """
        result = self.report()
        strings = []
        if '_FPS_' in result:
            strings.append(f'FPS: {result["_FPS_"]:>5.1f}')
        strings += [f'{name}: {val:>3.0f}' for name, val in result.items()]
        return strings

    def reset(self):
        self._record = defaultdict(list)
        self._active_timer_stack = []