Spaces:
Running
on
L40S
Running
on
L40S
File size: 23,438 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
"""This script is modified from [PARE](https://github.com/
mkocabas/PARE/tree/master/pare/models/layers).
Original license please see docs/additional_licenses.md.
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.runner.base_module import BaseModule
from torch.nn.modules.utils import _pair
from detrsmpl.utils.geometry import rot6d_to_rotmat
class LocallyConnected2d(nn.Module):
"""Locally Connected Layer.
Args:
in_channels (int):
the in channel of the features.
out_channels (int):
the out channel of the features.
output_size (List[int]):
the output size of the features.
kernel_size (int):
the size of the kernel.
stride (int):
the stride of the kernel.
Returns:
attended_features (torch.Tensor):
attended feature maps
"""
def __init__(self,
in_channels,
out_channels,
output_size,
kernel_size,
stride,
bias=False):
super(LocallyConnected2d, self).__init__()
output_size = _pair(output_size)
self.weight = nn.Parameter(
torch.randn(1, out_channels, in_channels, output_size[0],
output_size[1], kernel_size**2),
requires_grad=True,
)
if bias:
self.bias = nn.Parameter(torch.randn(1, out_channels,
output_size[0],
output_size[1]),
requires_grad=True)
else:
self.register_parameter('bias', None)
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
def forward(self, x):
_, c, h, w = x.size()
kh, kw = self.kernel_size
dh, dw = self.stride
x = x.unfold(2, kh, dh).unfold(3, kw, dw)
x = x.contiguous().view(*x.size()[:-2], -1)
# Sum in in_channel and kernel_size dims
out = (x.unsqueeze(1) * self.weight).sum([2, -1])
if self.bias is not None:
out += self.bias
return out
class KeypointAttention(nn.Module):
"""Keypoint Attention Layer.
Args:
use_conv (bool):
whether to use conv for the attended feature map.
Default: False
in_channels (List[int]):
the in channel of shape_cam features and pose features.
Default: (256, 64)
out_channels (List[int]):
the out channel of shape_cam features and pose features.
Default: (256, 64)
Returns:
attended_features (torch.Tensor):
attended feature maps
"""
def __init__(self,
use_conv=False,
in_channels=(256, 64),
out_channels=(256, 64),
act='softmax',
use_scale=False):
super(KeypointAttention, self).__init__()
self.use_conv = use_conv
self.in_channels = in_channels
self.out_channels = out_channels
self.act = act
self.use_scale = use_scale
if use_conv:
self.conv1x1_pose = nn.Conv1d(in_channels[0],
out_channels[0],
kernel_size=1)
self.conv1x1_shape_cam = nn.Conv1d(in_channels[1],
out_channels[1],
kernel_size=1)
def forward(self, features, heatmaps):
batch_size, num_joints, height, width = heatmaps.shape
if self.use_scale:
scale = 1.0 / np.sqrt(height * width)
heatmaps = heatmaps * scale
if self.act == 'softmax':
normalized_heatmap = F.softmax(heatmaps.reshape(
batch_size, num_joints, -1),
dim=-1)
elif self.act == 'sigmoid':
normalized_heatmap = torch.sigmoid(
heatmaps.reshape(batch_size, num_joints, -1))
features = features.reshape(batch_size, -1, height * width)
attended_features = torch.matmul(normalized_heatmap,
features.transpose(2, 1))
attended_features = attended_features.transpose(2, 1)
if self.use_conv:
if attended_features.shape[1] == self.in_channels[0]:
attended_features = self.conv1x1_pose(attended_features)
else:
attended_features = self.conv1x1_shape_cam(attended_features)
return attended_features
def interpolate(feat, uv):
"""
Args:
feat (torch.Tensor): [B, C, H, W] image features
uv (torch.Tensor): [B, 2, N] uv coordinates
in the image plane, range [-1, 1]
Returns:
samples[:, :, :, 0] (torch.Tensor):
[B, C, N] image features at the uv coordinates
"""
if uv.shape[-1] != 2:
uv = uv.transpose(1, 2) # [B, N, 2]
uv = uv.unsqueeze(2) # [B, N, 1, 2]
# NOTE: for newer PyTorch, it seems that training
# results are degraded due to implementation diff in F.grid_sample
# for old versions, simply remove the aligned_corners argument.
if int(torch.__version__.split('.')[1]) < 4:
samples = torch.nn.functional.grid_sample(feat, uv) # [B, C, N, 1]
else:
samples = torch.nn.functional.grid_sample(
feat, uv, align_corners=True) # [B, C, N, 1]
return samples[:, :, :, 0] # [B, C, N]
def _softmax(tensor, temperature, dim=-1):
return F.softmax(tensor * temperature, dim=dim)
def softargmax2d(
heatmaps,
temperature=None,
normalize_keypoints=True,
):
"""Softargmax layer for heatmaps."""
dtype, device = heatmaps.dtype, heatmaps.device
if temperature is None:
temperature = torch.tensor(1.0, dtype=dtype, device=device)
batch_size, num_channels, height, width = heatmaps.shape
x = torch.arange(0, width, device=device, dtype=dtype).reshape(
1, 1, 1, width).expand(batch_size, -1, height, -1)
y = torch.arange(0, height, device=device,
dtype=dtype).reshape(1, 1, height,
1).expand(batch_size, -1, -1, width)
# Should be Bx2xHxW
points = torch.cat([x, y], dim=1)
normalized_heatmap = _softmax(heatmaps.reshape(batch_size, num_channels,
-1),
temperature=temperature.reshape(1, -1, 1),
dim=-1)
# Should be BxJx2
keypoints = (
normalized_heatmap.reshape(batch_size, -1, 1, height * width) *
points.reshape(batch_size, 1, 2, -1)).sum(dim=-1)
if normalize_keypoints:
# Normalize keypoints to [-1, 1]
keypoints[:, :, 0] = (keypoints[:, :, 0] / (width - 1) * 2 - 1)
keypoints[:, :, 1] = (keypoints[:, :, 1] / (height - 1) * 2 - 1)
return keypoints, normalized_heatmap.reshape(batch_size, -1, height, width)
class PareHead(BaseModule):
def __init__(
self,
num_joints=24,
num_input_features=480,
softmax_temp=1.0,
num_deconv_layers=3,
num_deconv_filters=(256, 256, 256),
num_deconv_kernels=(4, 4, 4),
num_camera_params=3,
num_features_smpl=64,
final_conv_kernel=1,
pose_mlp_num_layers=1,
shape_mlp_num_layers=1,
pose_mlp_hidden_size=256,
shape_mlp_hidden_size=256,
bn_momentum=0.1,
use_heatmaps='part_segm',
use_keypoint_attention=False,
use_postconv_keypoint_attention=False,
keypoint_attention_act='softmax', # softmax, sigmoid
use_scale_keypoint_attention=False,
backbone='hrnet_w32-conv', # hrnet, resnet
smpl_mean_params=None,
deconv_with_bias=False,
):
"""PARE parameters regressor head. This class is modified from.
[PARE](hhttps://github.com/
mkocabas/PARE/blob/master/pare/models/head/pare_head.py). Original
license please see docs/additional_licenses.md.
Args:
num_joints (int):
Number of joints, should be 24 for smpl.
num_input_features (int):
Number of input featuremap channels.
softmax_temp (float):
Softmax tempreture
num_deconv_layers (int):
Number of deconvolution layers.
num_deconv_filters (List[int]):
Number of filters for each deconvolution layer,
len(num_deconv_filters) == num_deconv_layers.
num_deconv_kernels (List[int]):
Kernel size for each deconvolution layer,
len(num_deconv_kernels) == num_deconv_layers.
num_camera_params (int):
Number of predicted camera parameter dimension.
num_features_smpl (int):
Number of feature map channels.
final_conv_kernel (int):
Kernel size for the final deconvolution feature map channels.
pose_mlp_num_layers (int):
Number of mpl layers for pose parameter regression.
shape_mlp_num_layers (int):
Number of mpl layers for pose parameter regression.
pose_mlp_hidden_size (int):
Hidden size for pose mpl layers.
shape_mlp_hidden_size (int):
Hidden size for pose mpl layers.
bn_momemtum (float):
Momemtum for batch normalization.
use_heatmaps (str):
Types of heat maps to use.
use_keypoint_attention (bool)
Whether to use attention based on heat maps.
keypoint_attention_act (str):
Types of activation function for attention layers.
use_scale_keypoint_attention (str):
Whether to scale the attention
according to the size of the attention map.
deconv_with_bias (bool)
Whether to deconv with bias.
backbone (str):
Types of the backbone.
smpl_mean_params (str):
File name of the mean SMPL parameters
"""
super(PareHead, self).__init__()
self.backbone = backbone
self.num_joints = num_joints
self.deconv_with_bias = deconv_with_bias
self.use_heatmaps = use_heatmaps
self.pose_mlp_num_layers = pose_mlp_num_layers
self.shape_mlp_num_layers = shape_mlp_num_layers
self.pose_mlp_hidden_size = pose_mlp_hidden_size
self.shape_mlp_hidden_size = shape_mlp_hidden_size
self.use_keypoint_attention = use_keypoint_attention
self.num_input_features = num_input_features
self.bn_momentum = bn_momentum
if self.use_heatmaps == 'part_segm':
self.use_keypoint_attention = True
if backbone.startswith('hrnet'):
self.keypoint_deconv_layers = self._make_conv_layer(
num_deconv_layers,
num_deconv_filters,
(3, ) * num_deconv_layers,
)
self.num_input_features = num_input_features
self.smpl_deconv_layers = self._make_conv_layer(
num_deconv_layers,
num_deconv_filters,
(3, ) * num_deconv_layers,
)
else:
# part branch that estimates 2d keypoints
conv_fn = self._make_deconv_layer
self.keypoint_deconv_layers = conv_fn(
num_deconv_layers,
num_deconv_filters,
num_deconv_kernels,
)
# reset inplanes to 2048 -> final resnet layer
self.num_input_features = num_input_features
self.smpl_deconv_layers = conv_fn(
num_deconv_layers,
num_deconv_filters,
num_deconv_kernels,
)
pose_mlp_inp_dim = num_deconv_filters[-1]
smpl_final_dim = num_features_smpl
shape_mlp_inp_dim = num_joints * smpl_final_dim
self.keypoint_final_layer = nn.Conv2d(
in_channels=num_deconv_filters[-1],
out_channels=num_joints +
1 if self.use_heatmaps in ('part_segm',
'part_segm_pool') else num_joints,
kernel_size=final_conv_kernel,
stride=1,
padding=1 if final_conv_kernel == 3 else 0,
)
self.smpl_final_layer = nn.Conv2d(
in_channels=num_deconv_filters[-1],
out_channels=smpl_final_dim,
kernel_size=final_conv_kernel,
stride=1,
padding=1 if final_conv_kernel == 3 else 0,
)
# temperature for softargmax function
self.register_buffer('temperature', torch.tensor(softmax_temp))
mean_params = np.load(smpl_mean_params)
init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
init_shape = torch.from_numpy(
mean_params['shape'][:].astype('float32')).unsqueeze(0)
init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0)
self.register_buffer('init_pose', init_pose)
self.register_buffer('init_shape', init_shape)
self.register_buffer('init_cam', init_cam)
self.pose_mlp_inp_dim = pose_mlp_inp_dim
self.shape_mlp_inp_dim = shape_mlp_inp_dim
self.shape_mlp = self._get_shape_mlp(output_size=10)
self.cam_mlp = self._get_shape_mlp(output_size=num_camera_params)
self.pose_mlp = self._get_pose_mlp(num_joints=num_joints,
output_size=6)
self.keypoint_attention = KeypointAttention(
use_conv=use_postconv_keypoint_attention,
in_channels=(self.pose_mlp_inp_dim, smpl_final_dim),
out_channels=(self.pose_mlp_inp_dim, smpl_final_dim),
act=keypoint_attention_act,
use_scale=use_scale_keypoint_attention,
)
def _get_shape_mlp(self, output_size):
"""mlp layers for shape regression."""
if self.shape_mlp_num_layers == 1:
return nn.Linear(self.shape_mlp_inp_dim, output_size)
module_list = []
for i in range(self.shape_mlp_num_layers):
if i == 0:
module_list.append(
nn.Linear(self.shape_mlp_inp_dim,
self.shape_mlp_hidden_size))
elif i == self.shape_mlp_num_layers - 1:
module_list.append(
nn.Linear(self.shape_mlp_hidden_size, output_size))
else:
module_list.append(
nn.Linear(self.shape_mlp_hidden_size,
self.shape_mlp_hidden_size))
return nn.Sequential(*module_list)
def _get_pose_mlp(self, num_joints, output_size):
"""mlp layers for pose regression."""
if self.pose_mlp_num_layers == 1:
return LocallyConnected2d(
in_channels=self.pose_mlp_inp_dim,
out_channels=output_size,
output_size=[num_joints, 1],
kernel_size=1,
stride=1,
)
module_list = []
for i in range(self.pose_mlp_num_layers):
if i == 0:
module_list.append(
LocallyConnected2d(
in_channels=self.pose_mlp_inp_dim,
out_channels=self.pose_mlp_hidden_size,
output_size=[num_joints, 1],
kernel_size=1,
stride=1,
))
elif i == self.pose_mlp_num_layers - 1:
module_list.append(
LocallyConnected2d(
in_channels=self.pose_mlp_hidden_size,
out_channels=output_size,
output_size=[num_joints, 1],
kernel_size=1,
stride=1,
))
else:
module_list.append(
LocallyConnected2d(
in_channels=self.pose_mlp_hidden_size,
out_channels=self.pose_mlp_hidden_size,
output_size=[num_joints, 1],
kernel_size=1,
stride=1,
))
return nn.Sequential(*module_list)
def _get_deconv_cfg(self, deconv_kernel):
"""get deconv padding, output padding according to kernel size."""
if deconv_kernel == 4:
padding = 1
output_padding = 0
elif deconv_kernel == 3:
padding = 1
output_padding = 1
elif deconv_kernel == 2:
padding = 0
output_padding = 0
return deconv_kernel, padding, output_padding
def _make_conv_layer(self, num_layers, num_filters, num_kernels):
"""make convolution layers."""
assert num_layers == len(num_filters), \
'ERROR: num_conv_layers is different len(num_conv_filters)'
assert num_layers == len(num_kernels), \
'ERROR: num_conv_layers is different len(num_conv_filters)'
layers = []
for i in range(num_layers):
kernel, padding, output_padding = \
self._get_deconv_cfg(num_kernels[i])
planes = num_filters[i]
layers.append(
nn.Conv2d(in_channels=self.num_input_features,
out_channels=planes,
kernel_size=kernel,
stride=1,
padding=padding,
bias=self.deconv_with_bias))
layers.append(nn.BatchNorm2d(planes, momentum=self.bn_momentum))
layers.append(nn.ReLU(inplace=True))
self.num_input_features = planes
return nn.Sequential(*layers)
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
"""make deconvolution layers."""
assert num_layers == len(num_filters), \
'ERROR: num_deconv_layers is different len(num_deconv_filters)'
assert num_layers == len(num_kernels), \
'ERROR: num_deconv_layers is different len(num_deconv_filters)'
layers = []
for i in range(num_layers):
kernel, padding, output_padding = \
self._get_deconv_cfg(num_kernels[i])
planes = num_filters[i]
layers.append(
nn.ConvTranspose2d(in_channels=self.num_input_features,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=self.deconv_with_bias))
layers.append(nn.BatchNorm2d(planes, momentum=self.bn_momentum))
layers.append(nn.ReLU(inplace=True))
# if self.use_self_attention:
# layers.append(SelfAttention(planes))
self.num_input_features = planes
return nn.Sequential(*layers)
def forward(self, features):
batch_size = features.shape[0]
init_pose = self.init_pose.expand(batch_size, -1) # N, Jx6
init_shape = self.init_shape.expand(batch_size, -1)
init_cam = self.init_cam.expand(batch_size, -1)
output = {}
part_feats = self._get_2d_branch_feats(features)
part_attention = self._get_part_attention_map(part_feats, output)
smpl_feats = self._get_3d_smpl_feats(features, part_feats)
point_local_feat, cam_shape_feats = self._get_local_feats(
smpl_feats, part_attention, output)
pred_pose, pred_shape, pred_cam = self._get_final_preds(
point_local_feat, cam_shape_feats, init_pose, init_shape, init_cam)
pred_rotmat = rot6d_to_rotmat(pred_pose).reshape(batch_size, 24, 3, 3)
output.update({
'pred_pose': pred_rotmat,
'pred_cam': pred_cam,
'pred_shape': pred_shape,
})
return output
def _get_local_feats(self, smpl_feats, part_attention, output):
# 1x1 conv
"""get keypoints and camera features from backbone features."""
cam_shape_feats = self.smpl_final_layer(smpl_feats)
if self.use_keypoint_attention:
point_local_feat = self.keypoint_attention(smpl_feats,
part_attention)
cam_shape_feats = self.keypoint_attention(cam_shape_feats,
part_attention)
else:
point_local_feat = interpolate(smpl_feats, output['pred_kp2d'])
cam_shape_feats = interpolate(cam_shape_feats, output['pred_kp2d'])
return point_local_feat, cam_shape_feats
def _get_2d_branch_feats(self, features):
"""get part features from backbone features."""
part_feats = self.keypoint_deconv_layers(features)
return part_feats
def _get_3d_smpl_feats(self, features, part_feats):
"""get smpl feature maps from backbone features."""
smpl_feats = self.smpl_deconv_layers(features)
return smpl_feats
def _get_part_attention_map(self, part_feats, output):
"""get attention map from part feature map."""
heatmaps = self.keypoint_final_layer(part_feats)
if self.use_heatmaps == 'part_segm':
output['pred_segm_mask'] = heatmaps
# remove the the background channel
heatmaps = heatmaps[:, 1:, :, :]
else:
pred_kp2d, _ = softargmax2d(heatmaps, self.temperature)
output['pred_kp2d'] = pred_kp2d
output['pred_heatmaps_2d'] = heatmaps
return heatmaps
def _get_final_preds(self, pose_feats, cam_shape_feats, init_pose,
init_shape, init_cam):
"""get final preds."""
return self._pare_get_final_preds(pose_feats, cam_shape_feats,
init_pose, init_shape, init_cam)
def _pare_get_final_preds(self, pose_feats, cam_shape_feats, init_pose,
init_shape, init_cam):
"""get final preds."""
pose_feats = pose_feats.unsqueeze(-1) #
if init_pose.shape[-1] == 6:
# This means init_pose comes from a previous iteration
init_pose = init_pose.transpose(2, 1).unsqueeze(-1)
else:
# This means init pose comes from mean pose
init_pose = init_pose.reshape(init_pose.shape[0], 6,
-1).unsqueeze(-1)
shape_feats = cam_shape_feats
shape_feats = torch.flatten(shape_feats, start_dim=1)
pred_pose = self.pose_mlp(pose_feats)
pred_cam = self.cam_mlp(shape_feats)
pred_shape = self.shape_mlp(shape_feats)
pred_pose = pred_pose.squeeze(-1).transpose(2, 1) # N, J, 6
return pred_pose, pred_shape, pred_cam
|