Spaces:
Running
on
L40S
Running
on
L40S
File size: 19,781 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import os
import pickle
from abc import abstractmethod
from typing import List, Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_activation_layer, initialize
from mmcv.runner.base_module import BaseModule
from detrsmpl.utils.geometry import rot6d_to_rotmat
class IterativeRegression(nn.Module):
"""Regressor for ExPose Head."""
def __init__(self,
module,
mean_param,
num_stages=1,
append_params=True,
learn_mean=False,
detach_mean=False,
dim=1,
**kwargs):
super(IterativeRegression, self).__init__()
self.module = module
self._num_stages = num_stages
self.dim = dim
if learn_mean:
self.register_parameter(
'mean_param', nn.Parameter(mean_param, requires_grad=True))
else:
self.register_buffer('mean_param', mean_param)
self.append_params = append_params
self.detach_mean = detach_mean
def get_mean(self):
"""Get the initial mean param."""
return self.mean_param.clone()
@property
def num_stages(self):
return self._num_stages
def forward(self,
features: torch.Tensor,
cond: Optional[torch.Tensor] = None):
''' Computes deltas on top of condition iteratively
Parameters
----------
features: torch.Tensor
Input features
'''
batch_size = features.shape[0]
expand_shape = [batch_size] + [-1] * len(features.shape[1:])
parameters = []
deltas = []
module_input = features
if cond is None:
cond = self.mean_param.expand(*expand_shape).clone()
# Detach mean
if self.detach_mean:
cond = cond.detach()
if self.append_params:
assert features is not None, (
'Features are none even though append_params is True')
module_input = torch.cat([module_input, cond], dim=self.dim)
deltas.append(self.module(module_input))
num_params = deltas[-1].shape[1]
parameters.append(cond[:, :num_params].clone() + deltas[-1])
for stage_idx in range(1, self.num_stages):
module_input = torch.cat([features, parameters[stage_idx - 1]],
dim=-1)
params_upd = self.module(module_input)
deltas.append(params_upd)
parameters.append(parameters[stage_idx - 1] + params_upd)
return parameters
class MLP(nn.Module):
"""MLP
Args:
input_dim (int): Input dim of MLP.
output_dim (int): Output dim of MLP.
layers (List): Layer dims.
activ_type (str): Activation layer type.
dropout (float): Dropout.
gain (float): Xavier init gain value.
"""
def __init__(
self,
input_dim: int,
output_dim: int,
layers: List[int] = [],
activ_type: str = 'relu',
dropout: float = 0.5,
gain: float = 0.01,
):
super(MLP, self).__init__()
curr_input_dim = input_dim
self.num_layers = len(layers)
self.blocks = nn.ModuleList()
for layer_idx, layer_dim in enumerate(layers):
if activ_type == 'none':
active = None
else:
active = build_activation_layer(
cfg=dict(type=activ_type, inplace=True))
linear = nn.Linear(curr_input_dim, layer_dim, bias=True)
curr_input_dim = layer_dim
layer = []
layer.append(linear)
if active is not None:
layer.append(active)
if dropout > 0.0:
layer.append(nn.Dropout(dropout))
block = nn.Sequential(*layer)
self.add_module('layer_{:03d}'.format(layer_idx), block)
self.blocks.append(block)
self.output_layer = nn.Linear(curr_input_dim, output_dim)
initialize(self.output_layer,
init_cfg=dict(type='Xavier',
gain=gain,
distribution='uniform'))
def forward(self, module_input):
curr_input = module_input
for block in self.blocks:
curr_input = block(curr_input)
return self.output_layer(curr_input)
class ContinuousRotReprDecoder:
"""ExPose Decoder Decode latent representation to rotation.
Args:
num_angles (int): Joint num.
dtype: dtype.
mean (torch.tensor): Mean value for params.
"""
def __init__(self, num_angles, dtype=torch.float32, mean=None):
self.num_angles = num_angles
self.dtype = dtype
if isinstance(mean, dict):
mean = mean.get('cont_rot_repr', None)
if mean is None:
mean = torch.tensor([1.0, 0.0, 0.0, 1.0, 0.0, 0.0],
dtype=self.dtype).unsqueeze(dim=0).expand(
self.num_angles, -1).contiguous().view(-1)
if not torch.is_tensor(mean):
mean = torch.tensor(mean)
mean = mean.reshape(-1, 6)
if mean.shape[0] < self.num_angles:
mean = mean.repeat(self.num_angles // mean.shape[0] + 1,
1).contiguous()
mean = mean[:self.num_angles]
elif mean.shape[0] > self.num_angles:
mean = mean[:self.num_angles]
mean = mean.reshape(-1)
self.mean = mean
def get_mean(self):
return self.mean.clone()
def get_dim_size(self):
return self.num_angles * 6
def __call__(self, module_input):
batch_size = module_input.shape[0]
reshaped_input = module_input.view(-1, 6)
rot_mats = rot6d_to_rotmat(reshaped_input)
# aa = rot6d_to_aa(reshaped_input)
# return aa.view(batch_size,-1,3)
return rot_mats.view(batch_size, -1, 3, 3)
class ExPoseHead(BaseModule):
"""General Head for ExPose."""
def __init__(self, init_cfg=None):
super().__init__(init_cfg)
def load_regressor(self,
input_feat_dim: int = 2048,
param_mean: torch.Tensor = None,
regressor_cfg: dict = None):
"""Build regressor for ExPose Head."""
param_dim = param_mean.numel()
regressor = MLP(input_feat_dim + param_dim, param_dim, **regressor_cfg)
self.regressor = IterativeRegression(regressor,
param_mean,
num_stages=3)
def load_param_decoder(self, mean_poses_dict):
"""Build decoders for each pose."""
start = 0
mean_lst = []
self.pose_param_decoders = {}
for pose_param in self.pose_param_conf:
pose_name = pose_param['name']
num_angles = pose_param['num_angles']
if pose_param['use_mean']:
pose_decoder = ContinuousRotReprDecoder(
num_angles,
dtype=torch.float32,
mean=mean_poses_dict.get(pose_name, None))
else:
pose_decoder = ContinuousRotReprDecoder(num_angles,
dtype=torch.float32,
mean=None)
self.pose_param_decoders['{}_decoder'.format(
pose_name)] = pose_decoder
pose_dim = pose_decoder.get_dim_size()
pose_mean = pose_decoder.get_mean()
if pose_param['rotate_axis_x']:
pose_mean[3] = -1
idxs = list(range(start, start + pose_dim))
idxs = torch.tensor(idxs, dtype=torch.long)
self.register_buffer('{}_idxs'.format(pose_name), idxs)
start += pose_dim
mean_lst.append(pose_mean.view(-1))
return start, mean_lst
def get_camera_param(self, camera_cfg):
"""Build camera param."""
camera_pos_scale = camera_cfg.get('pos_func')
if camera_pos_scale == 'softplus':
camera_scale_func = F.softplus
elif camera_pos_scale == 'exp':
camera_scale_func = torch.exp
elif camera_pos_scale == 'none' or camera_pos_scale == 'None':
def func(x):
return x
camera_scale_func = func
mean_scale = camera_cfg.get('mean_scale', 0.9)
if camera_pos_scale == 'softplus':
mean_scale = np.log(np.exp(mean_scale) - 1)
elif camera_pos_scale == 'exp':
mean_scale = np.log(mean_scale)
camera_mean = torch.tensor([mean_scale, 0.0, 0.0], dtype=torch.float32)
camera_param_dim = 3
return camera_mean, camera_param_dim, camera_scale_func
def flat_params_to_dict(self, param_tensor):
"""Turn param tensors to dict."""
smplx_dict = {}
raw_dict = {}
for pose_param in self.pose_param_conf:
pose_name = pose_param['name']
pose_idxs = getattr(self, f'{pose_name}_idxs')
decoder = self.pose_param_decoders[f'{pose_name}_decoder']
pose = torch.index_select(param_tensor, 1, pose_idxs)
raw_dict[f'raw_{pose_name}'] = pose.clone()
smplx_dict[pose_name] = decoder(pose)
return smplx_dict, raw_dict
def get_mean(self, name, batch_size):
"""Get mean value of params."""
mean_param = self.regressor.get_mean().view(-1)
if name is None:
return mean_param.reshape(1, -1).expand(batch_size, -1)
idxs = getattr(self, f'{name}_idxs')
return mean_param[idxs].reshape(1, -1).expand(batch_size, -1)
def get_num_betas(self):
return self.num_betas
def get_num_expression_coeffs(self):
return self.num_expression_coeffs
@abstractmethod
def forward(self, features):
pass
class ExPoseBodyHead(ExPoseHead):
"""Head for ExPose Body Model."""
def __init__(self,
init_cfg=None,
num_betas: int = 10,
num_expression_coeffs: int = 10,
mean_pose_path: str = '',
shape_mean_path: str = '',
pose_param_conf: list = None,
input_feat_dim: int = 2048,
regressor_cfg: dict = None,
camera_cfg: dict = None):
super().__init__(init_cfg)
self.num_betas = num_betas
self.num_expression_coeffs = num_expression_coeffs
# poses
self.pose_param_conf = pose_param_conf
mean_poses_dict = {}
if os.path.exists(mean_pose_path):
with open(mean_pose_path, 'rb') as f:
mean_poses_dict = pickle.load(f)
start, mean_lst = self.load_param_decoder(mean_poses_dict)
# shape
if os.path.exists(shape_mean_path):
shape_mean = torch.from_numpy(
np.load(shape_mean_path,
allow_pickle=True)).to(dtype=torch.float32).reshape(
1, -1)[:, :num_betas].reshape(-1)
else:
shape_mean = torch.zeros([num_betas], dtype=torch.float32)
shape_idxs = list(range(start, start + num_betas))
self.register_buffer('shape_idxs',
torch.tensor(shape_idxs, dtype=torch.long))
start += num_betas
mean_lst.append(shape_mean.view(-1))
# expression
expression_mean = torch.zeros([num_expression_coeffs],
dtype=torch.float32)
expression_idxs = list(range(start, start + num_expression_coeffs))
self.register_buffer('expression_idxs',
torch.tensor(expression_idxs, dtype=torch.long))
start += num_expression_coeffs
mean_lst.append(expression_mean.view(-1))
# camera
mean, dim, scale_func = self.get_camera_param(camera_cfg)
self.camera_scale_func = scale_func
camera_idxs = list(range(start, start + dim))
self.register_buffer('camera_idxs',
torch.tensor(camera_idxs, dtype=torch.long))
start += dim
mean_lst.append(mean)
param_mean = torch.cat(mean_lst).view(1, -1)
self.load_regressor(input_feat_dim, param_mean, regressor_cfg)
def forward(self, features):
"""Forward function of ExPose Body Head.
Args:
features (List[torch.tensor]) : Output of restnet.
cond : Initial params. If none, use the mean params.
"""
body_parameters = self.regressor(features)[-1]
params_dict, raw_dict = self.flat_params_to_dict(body_parameters)
params_dict['betas'] = torch.index_select(body_parameters, 1,
self.shape_idxs)
params_dict['expression'] = torch.index_select(body_parameters, 1,
self.expression_idxs)
camera_params = torch.index_select(body_parameters, 1,
self.camera_idxs)
scale = camera_params[:, 0:1]
translation = camera_params[:, 1:3]
scale = self.camera_scale_func(scale)
camera_params = torch.cat([scale, translation], dim=1)
return {
'pred_param': params_dict,
'pred_cam': camera_params,
'pred_raw': raw_dict
}
class ExPoseHandHead(ExPoseHead):
"""Head for ExPose Hand Model."""
def __init__(self,
init_cfg=None,
num_betas: int = 10,
mean_pose_path: str = '',
pose_param_conf: list = None,
input_feat_dim: int = 2048,
regressor_cfg: dict = None,
camera_cfg: dict = None):
super().__init__(init_cfg)
self.num_betas = num_betas
# poses
self.pose_param_conf = pose_param_conf
mean_poses_dict = {}
if os.path.exists(mean_pose_path):
with open(mean_pose_path, 'rb') as f:
mean_poses_dict = pickle.load(f)
start, mean_lst = self.load_param_decoder(mean_poses_dict)
shape_mean = torch.zeros([num_betas], dtype=torch.float32)
shape_idxs = list(range(start, start + num_betas))
self.register_buffer('shape_idxs',
torch.tensor(shape_idxs, dtype=torch.long))
start += num_betas
mean_lst.append(shape_mean.view(-1))
# camera
mean, dim, scale_func = self.get_camera_param(camera_cfg)
self.camera_scale_func = scale_func
camera_idxs = list(range(start, start + dim))
self.register_buffer('camera_idxs',
torch.tensor(camera_idxs, dtype=torch.long))
start += dim
mean_lst.append(mean)
param_mean = torch.cat(mean_lst).view(1, -1)
self.load_regressor(input_feat_dim, param_mean, regressor_cfg)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, features, cond=None):
"""Forward function of ExPose Hand Head.
Args:
features (List[torch.tensor]) : Output of restnet.
cond : Initial params. If none, use the mean params.
"""
batch_size = features[-1].size(0)
features = self.avgpool(features[-1]).view(batch_size, -1)
hand_parameters = self.regressor(features, cond=cond)[-1]
params_dict, raw_dict = self.flat_params_to_dict(hand_parameters)
params_dict['betas'] = torch.index_select(hand_parameters, 1,
self.shape_idxs)
camera_params = torch.index_select(hand_parameters, 1,
self.camera_idxs)
scale = camera_params[:, 0:1]
translation = camera_params[:, 1:3]
scale = self.camera_scale_func(scale)
camera_params = torch.cat([scale, translation], dim=1)
return {
'pred_param': params_dict,
'pred_cam': camera_params,
'pred_raw': raw_dict
}
class ExPoseFaceHead(ExPoseHead):
"""Head for ExPose Face Model."""
def __init__(self,
init_cfg=None,
num_betas: int = 10,
num_expression_coeffs: int = 10,
pose_param_conf: list = None,
mean_pose_path: str = '',
input_feat_dim: int = 2048,
regressor_cfg: dict = None,
camera_cfg: dict = None):
super().__init__(init_cfg)
self.num_betas = num_betas
self.num_expression_coeffs = num_expression_coeffs
# poses
self.pose_param_conf = pose_param_conf
mean_poses_dict = {}
if os.path.exists(mean_pose_path):
with open(mean_pose_path, 'rb') as f:
mean_poses_dict = pickle.load(f)
start, mean_lst = self.load_param_decoder(mean_poses_dict)
# shape
shape_mean = torch.zeros([num_betas], dtype=torch.float32)
shape_idxs = list(range(start, start + num_betas))
self.register_buffer('shape_idxs',
torch.tensor(shape_idxs, dtype=torch.long))
start += num_betas
mean_lst.append(shape_mean.view(-1))
# expression
expression_mean = torch.zeros([num_expression_coeffs],
dtype=torch.float32)
expression_idxs = list(range(start, start + num_expression_coeffs))
self.register_buffer('expression_idxs',
torch.tensor(expression_idxs, dtype=torch.long))
start += num_expression_coeffs
mean_lst.append(expression_mean.view(-1))
# camera
mean, dim, scale_func = self.get_camera_param(camera_cfg)
self.camera_scale_func = scale_func
camera_idxs = list(range(start, start + dim))
self.register_buffer('camera_idxs',
torch.tensor(camera_idxs, dtype=torch.long))
start += dim
mean_lst.append(mean)
param_mean = torch.cat(mean_lst).view(1, -1)
self.load_regressor(input_feat_dim, param_mean, regressor_cfg)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, features, cond=None):
"""Forward function of ExPose Face Head.
Args:
features (List[torch.tensor]) : Output of restnet.
cond : Initial params. If none, use the mean params.
"""
batch_size = features[-1].size(0)
features = self.avgpool(features[-1]).view(batch_size, -1)
head_parameters = self.regressor(features, cond=cond)[-1]
params_dict, raw_dict = self.flat_params_to_dict(head_parameters)
params_dict['betas'] = torch.index_select(head_parameters, 1,
self.shape_idxs)
params_dict['expression'] = torch.index_select(head_parameters, 1,
self.expression_idxs)
camera_params = torch.index_select(head_parameters, 1,
self.camera_idxs)
scale = camera_params[:, 0:1]
translation = camera_params[:, 1:3]
scale = self.camera_scale_func(scale)
camera_params = torch.cat([scale, translation], dim=1)
return {
'pred_param': params_dict,
'pred_cam': camera_params,
'pred_raw': raw_dict
}
|