Spaces:
Running
on
L40S
Running
on
L40S
File size: 23,671 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional
import numpy as np
import torch
from smplx import SMPL as _SMPL
from smplx.lbs import batch_rigid_transform, blend_shapes, vertices2joints
from detrsmpl.core.conventions.keypoints_mapping import (
convert_kps,
get_keypoint_num,
)
from detrsmpl.core.conventions.segmentation import body_segmentation
from detrsmpl.models.utils import batch_inverse_kinematics_transform
from detrsmpl.utils.transforms import quat_to_rotmat
class SMPL(_SMPL):
"""Extension of the official SMPL implementation."""
body_pose_keys = {
'global_orient',
'body_pose',
}
full_pose_keys = {
'global_orient',
'body_pose',
}
NUM_VERTS = 6890
NUM_FACES = 13776
def __init__(self,
*args,
keypoint_src: str = 'smpl_45',
keypoint_dst: str = 'human_data',
keypoint_approximate: bool = False,
joints_regressor: str = None,
extra_joints_regressor: str = None,
**kwargs) -> None:
"""
Args:
*args: extra arguments for SMPL initialization.
keypoint_src: source convention of keypoints. This convention
is used for keypoints obtained from joint regressors.
Keypoints then undergo conversion into keypoint_dst
convention.
keypoint_dst: destination convention of keypoints. This convention
is used for keypoints in the output.
keypoint_approximate: whether to use approximate matching in
convention conversion for keypoints.
joints_regressor: path to joint regressor. Should be a .npy
file. If provided, replaces the official J_regressor of SMPL.
extra_joints_regressor: path to extra joint regressor. Should be
a .npy file. If provided, extra joints are regressed and
concatenated after the joints regressed with the official
J_regressor or joints_regressor.
**kwargs: extra keyword arguments for SMPL initialization.
Returns:
None
"""
super(SMPL, self).__init__(*args, **kwargs)
# joints = [JOINT_MAP[i] for i in JOINT_NAMES]
self.keypoint_src = keypoint_src
self.keypoint_dst = keypoint_dst
self.keypoint_approximate = keypoint_approximate
# override the default SMPL joint regressor if available
if joints_regressor is not None:
joints_regressor = torch.tensor(np.load(joints_regressor),
dtype=torch.float)
self.register_buffer('joints_regressor', joints_regressor)
# allow for extra joints to be regressed if available
if extra_joints_regressor is not None:
joints_regressor_extra = torch.tensor(
np.load(extra_joints_regressor), dtype=torch.float)
self.register_buffer('joints_regressor_extra',
joints_regressor_extra)
self.num_verts = self.get_num_verts()
self.num_joints = get_keypoint_num(convention=self.keypoint_dst)
self.body_part_segmentation = body_segmentation('smpl')
def forward(self,
*args,
return_verts: bool = True,
return_full_pose: bool = False,
**kwargs) -> dict:
"""Forward function.
Args:
*args: extra arguments for SMPL
return_verts: whether to return vertices
return_full_pose: whether to return full pose parameters
**kwargs: extra arguments for SMPL
Returns:
output: contains output parameters and attributes
"""
kwargs['get_skin'] = True
smpl_output = super(SMPL, self).forward(*args, **kwargs)
if not hasattr(self, 'joints_regressor'):
joints = smpl_output.joints
else:
joints = vertices2joints(self.joints_regressor,
smpl_output.vertices)
if hasattr(self, 'joints_regressor_extra'):
extra_joints = vertices2joints(self.joints_regressor_extra,
smpl_output.vertices)
joints = torch.cat([joints, extra_joints], dim=1)
joints, joint_mask = convert_kps(joints,
src=self.keypoint_src,
dst=self.keypoint_dst,
approximate=self.keypoint_approximate)
if isinstance(joint_mask, np.ndarray):
joint_mask = torch.tensor(joint_mask,
dtype=torch.uint8,
device=joints.device)
batch_size = joints.shape[0]
joint_mask = joint_mask.reshape(1, -1).expand(batch_size, -1)
output = dict(global_orient=smpl_output.global_orient,
body_pose=smpl_output.body_pose,
joints=joints,
joint_mask=joint_mask,
keypoints=torch.cat([joints, joint_mask[:, :, None]],
dim=-1),
betas=smpl_output.betas)
if return_verts:
output['vertices'] = smpl_output.vertices
if return_full_pose:
output['full_pose'] = smpl_output.full_pose
return output
@classmethod
def tensor2dict(cls,
full_pose: torch.Tensor,
betas: Optional[torch.Tensor] = None,
transl: Optional[torch.Tensor] = None):
"""Convert full pose tensor to pose dict.
Args:
full_pose (torch.Tensor): shape should be (..., 165) or
(..., 55, 3). All zeros for T-pose.
betas (Optional[torch.Tensor], optional): shape should be
(..., 10). The batch num should be 1 or corresponds with
full_pose.
Defaults to None.
transl (Optional[torch.Tensor], optional): shape should be
(..., 3). The batch num should be 1 or corresponds with
full_pose.
Defaults to None.
Returns:
dict: dict of smpl pose containing transl & betas.
"""
full_pose = full_pose.view(-1, (cls.NUM_BODY_JOINTS + 1) * 3)
body_pose = full_pose[:, 3:]
global_orient = full_pose[:, :3]
batch_size = full_pose.shape[0]
if betas is not None:
# squeeze or unsqueeze betas to 2 dims
betas = betas.view(-1, betas.shape[-1])
if betas.shape[0] == 1:
betas = betas.repeat(batch_size, 1)
else:
betas = betas
transl = transl.view(batch_size, -1) if transl is not None else transl
return {
'betas': betas,
'body_pose': body_pose,
'global_orient': global_orient,
'transl': transl,
}
@classmethod
def dict2tensor(cls, smpl_dict: dict) -> torch.Tensor:
"""Convert smpl pose dict to full pose tensor.
Args:
smpl_dict (dict): smpl pose dict.
Returns:
torch: full pose tensor.
"""
assert cls.body_pose_keys.issubset(smpl_dict)
for k in smpl_dict:
if isinstance(smpl_dict[k], np.ndarray):
smpl_dict[k] = torch.Tensor(smpl_dict[k])
global_orient = smpl_dict['global_orient'].view(-1, 3)
body_pose = smpl_dict['body_pose'].view(-1, 3 * cls.NUM_BODY_JOINTS)
full_pose = torch.cat([global_orient, body_pose], dim=1)
return full_pose
class GenderedSMPL(torch.nn.Module):
"""A wrapper of SMPL to handle gendered inputs."""
def __init__(self,
*args,
keypoint_src: str = 'smpl_45',
keypoint_dst: str = 'human_data',
keypoint_approximate: bool = False,
joints_regressor: str = None,
extra_joints_regressor: str = None,
**kwargs) -> None:
"""
Args:
*args: extra arguments for SMPL initialization.
keypoint_src: source convention of keypoints. This convention
is used for keypoints obtained from joint regressors.
Keypoints then undergo conversion into keypoint_dst
convention.
keypoint_dst: destination convention of keypoints. This convention
is used for keypoints in the output.
keypoint_approximate: whether to use approximate matching in
convention conversion for keypoints.
joints_regressor: path to joint regressor. Should be a .npy
file. If provided, replaces the official J_regressor of SMPL.
extra_joints_regressor: path to extra joint regressor. Should be
a .npy file. If provided, extra joints are regressed and
concatenated after the joints regressed with the official
J_regressor or joints_regressor.
**kwargs: extra keyword arguments for SMPL initialization.
Returns:
None
"""
super(GenderedSMPL, self).__init__()
assert 'gender' not in kwargs, \
self.__class__.__name__ + \
'does not need \'gender\' for initialization.'
self.smpl_neutral = SMPL(*args,
gender='neutral',
keypoint_src=keypoint_src,
keypoint_dst=keypoint_dst,
keypoint_approximate=keypoint_approximate,
joints_regressor=joints_regressor,
extra_joints_regressor=extra_joints_regressor,
**kwargs)
self.smpl_male = SMPL(*args,
gender='male',
keypoint_src=keypoint_src,
keypoint_dst=keypoint_dst,
keypoint_approximate=keypoint_approximate,
joints_regressor=joints_regressor,
extra_joints_regressor=extra_joints_regressor,
**kwargs)
self.smpl_female = SMPL(*args,
gender='female',
keypoint_src=keypoint_src,
keypoint_dst=keypoint_dst,
keypoint_approximate=keypoint_approximate,
joints_regressor=joints_regressor,
extra_joints_regressor=extra_joints_regressor,
**kwargs)
self.num_verts = self.smpl_neutral.num_verts
self.num_joints = self.smpl_neutral.num_joints
self.faces = self.smpl_neutral.faces
def forward(self,
*args,
betas: torch.Tensor = None,
body_pose: torch.Tensor = None,
global_orient: torch.Tensor = None,
transl: torch.Tensor = None,
return_verts: bool = True,
return_full_pose: bool = False,
gender: torch.Tensor = None,
device=None,
**kwargs):
"""Forward function.
Note:
B: batch size
J: number of joints of model, J = 23 (SMPL)
K: number of keypoints
Args:
*args: extra arguments
betas: Tensor([B, 10]), human body shape parameters of SMPL model.
body_pose: Tensor([B, J*3] or [B, J, 3, 3]), human body pose
parameters of SMPL model. It should be axis-angle vector
([B, J*3]) or rotation matrix ([B, J, 3, 3)].
global_orient: Tensor([B, 3] or [B, 1, 3, 3]), global orientation
of human body. It should be axis-angle vector ([B, 3]) or
rotation matrix ([B, 1, 3, 3)].
transl: Tensor([B, 3]), global translation of human body.
gender: Tensor([B]), gender parameters of human body. -1 for
neutral, 0 for male , 1 for female.
device: the device of the output
**kwargs: extra keyword arguments
Returns:
outputs (dict): Dict with mesh vertices and joints.
- vertices: Tensor([B, V, 3]), mesh vertices
- joints: Tensor([B, K, 3]), 3d keypoints regressed from
mesh vertices.
"""
batch_size = None
for attr in [betas, body_pose, global_orient, transl]:
if attr is not None:
if device is None:
device = attr.device
if batch_size is None:
batch_size = attr.shape[0]
else:
assert batch_size == attr.shape[0]
if gender is not None:
output = {
'vertices':
torch.zeros([batch_size, self.num_verts, 3], device=device),
'joints':
torch.zeros([batch_size, self.num_joints, 3], device=device),
'joint_mask':
torch.zeros([batch_size, self.num_joints],
dtype=torch.uint8,
device=device)
}
for body_model, gender_label in \
[(self.smpl_neutral, -1),
(self.smpl_male, 0),
(self.smpl_female, 1)]:
gender_idxs = gender == gender_label
# skip if no such gender is present
if gender_idxs.sum() == 0:
continue
output_model = body_model(
betas=betas[gender_idxs] if betas is not None else None,
body_pose=body_pose[gender_idxs]
if body_pose is not None else None,
global_orient=global_orient[gender_idxs]
if global_orient is not None else None,
transl=transl[gender_idxs] if transl is not None else None,
**kwargs)
output['joints'][gender_idxs] = output_model['joints']
# TODO: quick fix
if 'joint_mask' in output_model:
output['joint_mask'][gender_idxs] = output_model[
'joint_mask']
if return_verts:
output['vertices'][gender_idxs] = output_model['vertices']
if return_full_pose:
output['full_pose'][gender_idxs] = output_model[
'full_pose']
else:
output = self.smpl_neutral(betas=betas,
body_pose=body_pose,
global_orient=global_orient,
transl=transl,
**kwargs)
return output
def to_tensor(array, dtype=torch.float32):
if 'torch.tensor' not in str(type(array)):
return torch.tensor(array, dtype=dtype)
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype)
class HybrIKSMPL(SMPL):
"""Extension of the SMPL for HybrIK."""
NUM_JOINTS = 23
NUM_BODY_JOINTS = 23
NUM_BETAS = 10
JOINT_NAMES = [
'pelvis',
'left_hip',
'right_hip', # 2
'spine1',
'left_knee',
'right_knee', # 5
'spine2',
'left_ankle',
'right_ankle', # 8
'spine3',
'left_foot',
'right_foot', # 11
'neck',
'left_collar',
'right_collar', # 14
'jaw', # 15
'left_shoulder',
'right_shoulder', # 17
'left_elbow',
'right_elbow', # 19
'left_wrist',
'right_wrist', # 21
'left_thumb',
'right_thumb', # 23
'head',
'left_middle',
'right_middle', # 26
'left_bigtoe',
'right_bigtoe' # 28
]
LEAF_NAMES = [
'head', 'left_middle', 'right_middle', 'left_bigtoe', 'right_bigtoe'
]
root_idx_17 = 0
root_idx_smpl = 0
def __init__(self, *args, extra_joints_regressor=None, **kwargs):
"""
Args:
*args: extra arguments for SMPL initialization.
extra_joints_regressor: path to extra joint regressor. Should be
a .npy file. If provided, extra joints are regressed and
concatenated after the joints regressed with the official
J_regressor or joints_regressor.
**kwargs: extra keyword arguments for SMPL initialization.
Returns:
None
"""
super(HybrIKSMPL,
self).__init__(*args,
extra_joints_regressor=extra_joints_regressor,
create_betas=False,
create_global_orient=False,
create_body_pose=False,
create_transl=False,
**kwargs)
self.dtype = torch.float32
self.num_joints = 29
self.ROOT_IDX = self.JOINT_NAMES.index('pelvis')
self.LEAF_IDX = [
self.JOINT_NAMES.index(name) for name in self.LEAF_NAMES
]
self.SPINE3_IDX = 9
# # indices of parents for each joints
parents = torch.zeros(len(self.JOINT_NAMES), dtype=torch.long)
# extend kinematic tree
parents[:24] = self.parents
parents[24] = 15
parents[25] = 22
parents[26] = 23
parents[27] = 10
parents[28] = 11
if parents.shape[0] > self.num_joints:
parents = parents[:24]
self.register_buffer('children_map',
self._parents_to_children(parents))
self.parents = parents
def _parents_to_children(self, parents):
children = torch.ones_like(parents) * -1
for i in range(self.num_joints):
if children[parents[i]] < 0:
children[parents[i]] = i
for i in self.LEAF_IDX:
if i < children.shape[0]:
children[i] = -1
children[self.SPINE3_IDX] = -3
children[0] = 3
children[self.SPINE3_IDX] = self.JOINT_NAMES.index('neck')
return children
def forward(self,
pose_skeleton,
betas,
phis,
global_orient,
transl=None,
return_verts=True,
leaf_thetas=None):
"""Inverse pass for the SMPL model.
Args:
pose_skeleton: torch.tensor, optional, shape Bx(J*3)
It should be a tensor that contains joint locations in
(img, Y, Z) format. (default=None)
betas: torch.tensor, optional, shape Bx10
It can used if shape parameters
`betas` are predicted from some external model.
(default=None)
phis: torch.tensor, shape Bx23x2
Rotation on bone axis parameters
global_orient: torch.tensor, optional, shape Bx3
Global Orientations.
transl: torch.tensor, optional, shape Bx3
Global Translations.
return_verts: bool, optional
Return the vertices. (default=True)
leaf_thetas: torch.tensor, optional, shape Bx5x4
Quaternions of 5 leaf joints. (default=None)
Returns
outputs: output dictionary.
"""
batch_size = pose_skeleton.shape[0]
if leaf_thetas is not None:
leaf_thetas = leaf_thetas.reshape(batch_size * 5, 4)
leaf_thetas = quat_to_rotmat(leaf_thetas)
batch_size = max(betas.shape[0], pose_skeleton.shape[0])
device = betas.device
# 1. Add shape contribution
v_shaped = self.v_template + blend_shapes(betas, self.shapedirs)
# 2. Get the rest joints
# NxJx3 array
if leaf_thetas is not None:
rest_J = vertices2joints(self.J_regressor, v_shaped)
else:
rest_J = torch.zeros((v_shaped.shape[0], 29, 3),
dtype=self.dtype,
device=device)
rest_J[:, :24] = vertices2joints(self.J_regressor, v_shaped)
leaf_number = [411, 2445, 5905, 3216, 6617]
leaf_vertices = v_shaped[:, leaf_number].clone()
rest_J[:, 24:] = leaf_vertices
# 3. Get the rotation matrics
rot_mats, rotate_rest_pose = batch_inverse_kinematics_transform(
pose_skeleton,
global_orient,
phis,
rest_J.clone(),
self.children_map,
self.parents,
dtype=self.dtype,
train=self.training,
leaf_thetas=leaf_thetas)
test_joints = True
if test_joints:
new_joints, A = batch_rigid_transform(rot_mats,
rest_J[:, :24].clone(),
self.parents[:24],
dtype=self.dtype)
else:
new_joints = None
# assert torch.mean(torch.abs(rotate_rest_pose - new_joints)) < 1e-5
# 4. Add pose blend shapes
# rot_mats: N x (J + 1) x 3 x 3
ident = torch.eye(3, dtype=self.dtype, device=device)
pose_feature = (rot_mats[:, 1:] - ident).view([batch_size, -1])
pose_offsets = torch.matmul(pose_feature, self.posedirs) \
.view(batch_size, -1, 3)
v_posed = pose_offsets + v_shaped
# 5. Do skinning:
# W is N x V x (J + 1)
W = self.lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1])
# (N x V x (J + 1)) x (N x (J + 1) x 16)
num_joints = self.J_regressor.shape[0]
T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \
.view(batch_size, -1, 4, 4)
homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1],
dtype=self.dtype,
device=device)
v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2)
v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1))
vertices = v_homo[:, :, :3, 0]
joints_from_verts = vertices2joints(self.joints_regressor_extra,
vertices)
# rot_mats = rot_mats.reshape(batch_size * 24, 3, 3)
if transl is not None:
new_joints += transl.unsqueeze(dim=1)
vertices += transl.unsqueeze(dim=1)
joints_from_verts += transl.unsqueeze(dim=1)
else:
new_joints = new_joints - \
new_joints[:, self.root_idx_smpl, :].unsqueeze(1).detach()
joints_from_verts = joints_from_verts - \
joints_from_verts[:, self.root_idx_17, :].unsqueeze(1).detach()
output = {
'vertices': vertices,
'joints': new_joints,
'poses': rot_mats,
'joints_from_verts': joints_from_verts,
}
return output
|