Spaces:
Sleeping
Sleeping
File size: 14,271 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import numpy as np
import torch
import os.path as osp
from config.config import cfg
from .smplx import smplx
import pickle
class SMPLX(object):
def __init__(self):
self.layer_arg = {
'create_global_orient': False,
'create_body_pose': False,
'create_left_hand_pose': False,
'create_right_hand_pose': False,
'create_jaw_pose': False,
'create_leye_pose': False,
'create_reye_pose': False,
'create_betas': False,
'create_expression': False,
'create_transl': False
}
print(cfg.human_model_path)
self.layer = {
'neutral':
smplx.create(cfg.human_model_path,
'smplx',
gender='NEUTRAL',
use_pca=False,
use_face_contour=True,
**self.layer_arg),
'male':
smplx.create(cfg.human_model_path,
'smplx',
gender='MALE',
use_pca=False,
use_face_contour=True,
**self.layer_arg),
'female':
smplx.create(cfg.human_model_path,
'smplx',
gender='FEMALE',
use_pca=False,
use_face_contour=True,
**self.layer_arg)
}
self.vertex_num = 10475
self.face = self.layer['neutral'].faces
self.shape_param_dim = 10
self.expr_code_dim = 10
with open(osp.join(cfg.human_model_path, 'smplx', 'SMPLX_to_J14.pkl'),
'rb') as f:
self.j14_regressor = pickle.load(f, encoding='latin1')
with open(
osp.join(cfg.human_model_path, 'smplx',
'MANO_SMPLX_vertex_ids.pkl'), 'rb') as f:
self.hand_vertex_idx = pickle.load(f, encoding='latin1')
self.face_vertex_idx = np.load(
osp.join(cfg.human_model_path, 'smplx',
'SMPL-X__FLAME_vertex_ids.npy'))
self.J_regressor = self.layer['neutral'].J_regressor.numpy()
self.J_regressor_idx = {
'pelvis': 0,
'lwrist': 20,
'rwrist': 21,
'neck': 12
}
self.orig_hand_regressor = self.make_hand_regressor()
#self.orig_hand_regressor = {'left': self.layer.J_regressor.numpy()[[20,37,38,39,25,26,27,28,29,30,34,35,36,31,32,33],:], 'right': self.layer.J_regressor.numpy()[[21,52,53,54,40,41,42,43,44,45,49,50,51,46,47,48],:]}
# original SMPLX joint set
self.orig_joint_num = 53 # 22 (body joints) + 30 (hand joints) + 1 (face jaw joint)
self.orig_joints_name = \
('Pelvis', 'L_Hip', 'R_Hip', 'Spine_1', 'L_Knee', 'R_Knee', 'Spine_2', 'L_Ankle', 'R_Ankle', 'Spine_3', 'L_Foot', 'R_Foot', 'Neck', 'L_Collar', 'R_Collar', 'Head', 'L_Shoulder', 'R_Shoulder', 'L_Elbow', 'R_Elbow', 'L_Wrist', 'R_Wrist', # body joints
'L_Index_1', 'L_Index_2', 'L_Index_3', 'L_Middle_1', 'L_Middle_2', 'L_Middle_3', 'L_Pinky_1', 'L_Pinky_2', 'L_Pinky_3', 'L_Ring_1', 'L_Ring_2', 'L_Ring_3', 'L_Thumb_1', 'L_Thumb_2', 'L_Thumb_3', # left hand joints
'R_Index_1', 'R_Index_2', 'R_Index_3', 'R_Middle_1', 'R_Middle_2', 'R_Middle_3', 'R_Pinky_1', 'R_Pinky_2', 'R_Pinky_3', 'R_Ring_1', 'R_Ring_2', 'R_Ring_3', 'R_Thumb_1', 'R_Thumb_2', 'R_Thumb_3', # right hand joints
'Jaw' # face jaw joint
)
self.orig_flip_pairs = \
( (1,2), (4,5), (7,8), (10,11), (13,14), (16,17), (18,19), (20,21), # body joints
(22,37), (23,38), (24,39), (25,40), (26,41), (27,42), (28,43), (29,44), (30,45), (31,46), (32,47), (33,48), (34,49), (35,50), (36,51) # hand joints
)
self.orig_root_joint_idx = self.orig_joints_name.index('Pelvis')
self.orig_joint_part = \
{'body': range(self.orig_joints_name.index('Pelvis'), self.orig_joints_name.index('R_Wrist')+1),
'lhand': range(self.orig_joints_name.index('L_Index_1'), self.orig_joints_name.index('L_Thumb_3')+1),
'rhand': range(self.orig_joints_name.index('R_Index_1'), self.orig_joints_name.index('R_Thumb_3')+1),
'face': range(self.orig_joints_name.index('Jaw'), self.orig_joints_name.index('Jaw')+1)}
# changed SMPLX joint set for the supervision
self.joint_num = 137 # 25 (body joints) + 40 (hand joints) + 72 (face keypoints)
self.joints_name = \
('Pelvis', 'L_Hip', 'R_Hip', 'L_Knee', 'R_Knee', 'L_Ankle', 'R_Ankle', 'Neck', 'L_Shoulder', 'R_Shoulder', 'L_Elbow', 'R_Elbow', 'L_Wrist', 'R_Wrist', 'L_Big_toe', 'L_Small_toe', 'L_Heel', 'R_Big_toe', 'R_Small_toe', 'R_Heel', 'L_Ear', 'R_Ear', 'L_Eye', 'R_Eye', 'Nose',# body joints
'L_Thumb_1', 'L_Thumb_2', 'L_Thumb_3', 'L_Thumb_4', 'L_Index_1', 'L_Index_2', 'L_Index_3', 'L_Index_4', 'L_Middle_1', 'L_Middle_2', 'L_Middle_3', 'L_Middle_4', 'L_Ring_1', 'L_Ring_2', 'L_Ring_3', 'L_Ring_4', 'L_Pinky_1', 'L_Pinky_2', 'L_Pinky_3', 'L_Pinky_4', # left hand joints
'R_Thumb_1', 'R_Thumb_2', 'R_Thumb_3', 'R_Thumb_4', 'R_Index_1', 'R_Index_2', 'R_Index_3', 'R_Index_4', 'R_Middle_1', 'R_Middle_2', 'R_Middle_3', 'R_Middle_4', 'R_Ring_1', 'R_Ring_2', 'R_Ring_3', 'R_Ring_4', 'R_Pinky_1', 'R_Pinky_2', 'R_Pinky_3', 'R_Pinky_4', # right hand joints
*['Face_' + str(i) for i in range(1,73)] # face keypoints (too many keypoints... omit real names. have same name of keypoints defined in FLAME class)
)
self.root_joint_idx = self.joints_name.index('Pelvis')
self.lwrist_idx = self.joints_name.index('L_Wrist')
self.rwrist_idx = self.joints_name.index('R_Wrist')
self.neck_idx = self.joints_name.index('Neck')
self.flip_pairs = \
( (1,2), (3,4), (5,6), (8,9), (10,11), (12,13), (14,17), (15,18), (16,19), (20,21), (22,23), # body joints
(25,45), (26,46), (27,47), (28,48), (29,49), (30,50), (31,51), (32,52), (33,53), (34,54), (35,55), (36,56), (37,57), (38,58), (39,59), (40,60), (41,61), (42,62), (43,63), (44,64), # hand joints
(67,68), # face eyeballs
(69,78), (70,77), (71,76), (72,75), (73,74), # face eyebrow
(83,87), (84,86), # face below nose
(88,97), (89,96), (90,95), (91,94), (92,99), (93,98), # face eyes
(100,106), (101,105), (102,104), (107,111), (108,110), # face mouth
(112,116), (113,115), (117,119), # face lip
(120,136), (121,135), (122,134), (123,133), (124,132), (125,131), (126,130), (127,129) # face contours
)
self.joint_idx = \
(0,1,2,4,5,7,8,12,16,17,18,19,20,21,60,61,62,63,64,65,59,58,57,56,55, # body joints
37,38,39,66,25,26,27,67,28,29,30,68,34,35,36,69,31,32,33,70, # left hand joints
52,53,54,71,40,41,42,72,43,44,45,73,49,50,51,74,46,47,48,75, # right hand joints
22,15, # jaw, head
57,56, # eyeballs
76,77,78,79,80,81,82,83,84,85, # eyebrow
86,87,88,89, # nose
90,91,92,93,94, # below nose
95,96,97,98,99,100,101,102,103,104,105,106, # eyes
107, # right mouth
108,109,110,111,112, # upper mouth
113, # left mouth
114,115,116,117,118, # lower mouth
119, # right lip
120,121,122, # upper lip
123, # left lip
124,125,126, # lower lip
127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 # face contour
)
self.joint_part = \
{'body': range(self.joints_name.index('Pelvis'), self.joints_name.index('Nose')+1),
'lhand': range(self.joints_name.index('L_Thumb_1'), self.joints_name.index('L_Pinky_4')+1),
'rhand': range(self.joints_name.index('R_Thumb_1'), self.joints_name.index('R_Pinky_4')+1),
'hand': range(self.joints_name.index('L_Thumb_1'), self.joints_name.index('R_Pinky_4')+1),
'face': range(self.joints_name.index('Face_1'), self.joints_name.index('Face_72')+1)}
# changed SMPLX joint set for PositionNet prediction
self.pos_joint_num = 65 # 25 (body joints) + 40 (hand joints)
self.pos_joints_name = \
('Pelvis', 'L_Hip', 'R_Hip', 'L_Knee', 'R_Knee', 'L_Ankle', 'R_Ankle', 'Neck', 'L_Shoulder', 'R_Shoulder', 'L_Elbow', 'R_Elbow', 'L_Wrist', 'R_Wrist', 'L_Big_toe', 'L_Small_toe', 'L_Heel', 'R_Big_toe', 'R_Small_toe', 'R_Heel', 'L_Ear', 'R_Ear', 'L_Eye', 'R_Eye', 'Nose', # body joints
'L_Thumb_1', 'L_Thumb_2', 'L_Thumb_3', 'L_Thumb_4', 'L_Index_1', 'L_Index_2', 'L_Index_3', 'L_Index_4', 'L_Middle_1', 'L_Middle_2', 'L_Middle_3', 'L_Middle_4', 'L_Ring_1', 'L_Ring_2', 'L_Ring_3', 'L_Ring_4', 'L_Pinky_1', 'L_Pinky_2', 'L_Pinky_3', 'L_Pinky_4', # left hand joints
'R_Thumb_1', 'R_Thumb_2', 'R_Thumb_3', 'R_Thumb_4', 'R_Index_1', 'R_Index_2', 'R_Index_3', 'R_Index_4', 'R_Middle_1', 'R_Middle_2', 'R_Middle_3', 'R_Middle_4', 'R_Ring_1', 'R_Ring_2', 'R_Ring_3', 'R_Ring_4', 'R_Pinky_1', 'R_Pinky_2', 'R_Pinky_3', 'R_Pinky_4', # right hand joints
)
self.pos_joint_part = \
{'body': range(self.pos_joints_name.index('Pelvis'), self.pos_joints_name.index('Nose')+1),
'lhand': range(self.pos_joints_name.index('L_Thumb_1'), self.pos_joints_name.index('L_Pinky_4')+1),
'rhand': range(self.pos_joints_name.index('R_Thumb_1'), self.pos_joints_name.index('R_Pinky_4')+1),
'hand': range(self.pos_joints_name.index('L_Thumb_1'), self.pos_joints_name.index('R_Pinky_4')+1)}
self.pos_joint_part['L_MCP'] = [
self.pos_joints_name.index('L_Index_1') -
len(self.pos_joint_part['body']),
self.pos_joints_name.index('L_Middle_1') -
len(self.pos_joint_part['body']),
self.pos_joints_name.index('L_Ring_1') -
len(self.pos_joint_part['body']),
self.pos_joints_name.index('L_Pinky_1') -
len(self.pos_joint_part['body'])
]
self.pos_joint_part['R_MCP'] = [
self.pos_joints_name.index('R_Index_1') -
len(self.pos_joint_part['body']) -
len(self.pos_joint_part['lhand']),
self.pos_joints_name.index('R_Middle_1') -
len(self.pos_joint_part['body']) -
len(self.pos_joint_part['lhand']),
self.pos_joints_name.index('R_Ring_1') -
len(self.pos_joint_part['body']) -
len(self.pos_joint_part['lhand']),
self.pos_joints_name.index('R_Pinky_1') -
len(self.pos_joint_part['body']) -
len(self.pos_joint_part['lhand'])
]
def make_hand_regressor(self):
regressor = self.layer['neutral'].J_regressor.numpy()
lhand_regressor = np.concatenate(
(regressor[[20, 37, 38, 39], :],
np.eye(self.vertex_num)[5361, None], regressor[[25, 26, 27], :],
np.eye(self.vertex_num)[4933, None], regressor[[28, 29, 30], :],
np.eye(self.vertex_num)[5058, None], regressor[[34, 35, 36], :],
np.eye(self.vertex_num)[5169, None], regressor[[31, 32, 33], :],
np.eye(self.vertex_num)[5286, None]))
rhand_regressor = np.concatenate(
(regressor[[21, 52, 53, 54], :],
np.eye(self.vertex_num)[8079, None], regressor[[40, 41, 42], :],
np.eye(self.vertex_num)[7669, None], regressor[[43, 44, 45], :],
np.eye(self.vertex_num)[7794, None], regressor[[49, 50, 51], :],
np.eye(self.vertex_num)[7905, None], regressor[[46, 47, 48], :],
np.eye(self.vertex_num)[8022, None]))
hand_regressor = {'left': lhand_regressor, 'right': rhand_regressor}
return hand_regressor
def reduce_joint_set(self, joint):
new_joint = []
for name in self.pos_joints_name:
idx = self.joints_name.index(name)
new_joint.append(joint[:, idx, :])
new_joint = torch.stack(new_joint, 1)
return new_joint
class SMPL(object):
def __init__(self):
self.layer_arg = {
'create_body_pose': False,
'create_betas': False,
'create_global_orient': False,
'create_transl': False
}
self.layer = {
'neutral':
smplx.create(cfg.human_model_path,
'smpl',
gender='NEUTRAL',
**self.layer_arg),
'male':
smplx.create(cfg.human_model_path,
'smpl',
gender='MALE',
**self.layer_arg),
'female':
smplx.create(cfg.human_model_path,
'smpl',
gender='FEMALE',
**self.layer_arg)
}
self.vertex_num = 6890
self.face = self.layer['neutral'].faces
self.shape_param_dim = 10
self.vposer_code_dim = 32
# original SMPL joint set
self.orig_joint_num = 24
self.orig_joints_name = ('Pelvis', 'L_Hip', 'R_Hip', 'Spine_1',
'L_Knee', 'R_Knee', 'Spine_2', 'L_Ankle',
'R_Ankle', 'Spine_3', 'L_Foot', 'R_Foot',
'Neck', 'L_Collar', 'R_Collar', 'Head',
'L_Shoulder', 'R_Shoulder', 'L_Elbow',
'R_Elbow', 'L_Wrist', 'R_Wrist', 'L_Hand',
'R_Hand')
self.orig_flip_pairs = ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14),
(16, 17), (18, 19), (20, 21), (22, 23))
self.orig_root_joint_idx = self.orig_joints_name.index('Pelvis')
self.orig_joint_regressor = self.layer['neutral'].J_regressor.numpy(
).astype(np.float32)
self.joint_num = self.orig_joint_num
self.joints_name = self.orig_joints_name
self.flip_pairs = self.orig_flip_pairs
self.root_joint_idx = self.orig_root_joint_idx
self.joint_regressor = self.orig_joint_regressor
self.joint_regressor_male = self.layer['male'].J_regressor.numpy(
).astype(np.float32)
smpl_x = SMPLX()
smpl = SMPL()
|