File size: 11,502 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from collections.abc import Sequence

import mmcv
import numpy as np
import torch
from mmcv.parallel import DataContainer as DC
from PIL import Image


def to_tensor(data):
    """Convert objects of various python types to :obj:`torch.Tensor`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int` and :class:`float`.
    """
    if isinstance(data, torch.Tensor):
        return data
    elif isinstance(data, np.ndarray):
        return torch.from_numpy(data)
    elif isinstance(data, Sequence) and not mmcv.is_str(data):
        return torch.tensor(data)
    elif isinstance(data, int):
        return torch.LongTensor([data])
    elif isinstance(data, float):
        return torch.FloatTensor([data])
    else:
        raise TypeError(
            f'Type {type(data)} cannot be converted to tensor.'
            'Supported types are: `numpy.ndarray`, `torch.Tensor`, '
            '`Sequence`, `int` and `float`')


class ToTensor(object):
    def __init__(self, keys):
        self.keys = keys

    def __call__(self, results):
        for key in self.keys:
            results[key] = to_tensor(results[key])
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(keys={self.keys})'


class ImageToTensor(object):
    def __init__(self, keys):
        self.keys = keys

    def __call__(self, results):
        for key in self.keys:
            img = results[key]
            if len(img.shape) < 3:
                img = np.expand_dims(img, -1)
            results[key] = to_tensor(img.transpose(2, 0, 1))
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(keys={self.keys})'


class Transpose(object):
    def __init__(self, keys, order):
        self.keys = keys
        self.order = order

    def __call__(self, results):
        for key in self.keys:
            results[key] = results[key].transpose(self.order)
        return results

    def __repr__(self):
        return self.__class__.__name__ + \
            f'(keys={self.keys}, order={self.order})'


class ToPIL(object):
    def __init__(self):
        pass

    def __call__(self, results):
        results['img'] = Image.fromarray(results['img'])
        return results


class ToNumpy(object):
    def __init__(self):
        pass

    def __call__(self, results):
        results['img'] = np.array(results['img'], dtype=np.float32)
        return results


class Collect(object):
    """Collect data from the loader relevant to the specific task.

    This is usually the last stage of the data loader pipeline. Typically keys
    is set to some subset of "img" and "gt_label".

    Args:
        keys (Sequence[str]): Keys of results to be collected in ``data``.
        meta_keys (Sequence[str], optional): Meta keys to be converted to
            ``mmcv.DataContainer`` and collected in ``data[img_metas]``.
            Default: ``('filename', 'ori_shape', 'img_shape', 'flip',
            'flip_direction', 'img_norm_cfg')``

    Returns:
        dict: The result dict contains the following keys
                - keys in``self.keys``
                - ``img_metas`` if available
    """
    def __init__(self,
                 keys,
                 meta_keys=('filename', 'ori_filename', 'ori_shape',
                            'img_shape', 'flip', 'flip_direction',
                            'img_norm_cfg')):
        self.keys = keys
        self.meta_keys = meta_keys

    def __call__(self, results):
        data = {}
        img_meta = {}
        for key in self.meta_keys:
            if key in results:
                img_meta[key] = results[key]
        data['img_metas'] = DC(img_meta, cpu_only=True)
        for key in self.keys:
            data[key] = results[key]
        return data

    def __repr__(self):
        return self.__class__.__name__ + \
            f'(keys={self.keys}, meta_keys={self.meta_keys})'


class ToDataContainer:
    """Convert results to :obj:`mmcv.DataContainer` by given fields.

    Args:
        fields (Sequence[dict]): Each field is a dict like
            ``dict(key='xxx', **kwargs)``. The ``key`` in result will
            be converted to :obj:`mmcv.DataContainer` with ``**kwargs``.
            Default: ``(dict(key='img', stack=True), dict(key='gt_bboxes'),
            dict(key='gt_labels'))``.
    """
    def __init__(self,
                 fields=(dict(key='img', stack=True), dict(key='gt_bboxes'),
                         dict(key='gt_labels'))):
        self.fields = fields

    def __call__(self, results):
        """Call function to convert data in results to
        :obj:`mmcv.DataContainer`.

        Args:
            results (dict): Result dict contains the data to convert.

        Returns:
            dict: The result dict contains the data converted to \
                :obj:`mmcv.DataContainer`.
        """

        for field in self.fields:
            field = field.copy()
            key = field.pop('key')
            results[key] = DC(results[key], **field)
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(fields={self.fields})'


class DefaultFormatBundle:
    """Default formatting bundle.

    It simplifies the pipeline of formatting common fields, including "img",
    "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg".
    These fields are formatted as follows.

    - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
    - proposals: (1)to tensor, (2)to DataContainer
    - gt_bboxes: (1)to tensor, (2)to DataContainer
    - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
    - gt_labels: (1)to tensor, (2)to DataContainer
    - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True)
    - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, \
                       (3)to DataContainer (stack=True)

    Args:
        img_to_float (bool): Whether to force the image to be converted to
            float type. Default: True.
        pad_val (dict): A dict for padding value in batch collating,
            the default value is `dict(img=0, masks=0, seg=255)`.
            Without this argument, the padding value of "gt_semantic_seg"
            will be set to 0 by default, which should be 255.
    """
    def __init__(self,
                 img_to_float=True,
                 pad_val=dict(img=0, masks=0, seg=255)):
        self.img_to_float = img_to_float
        self.pad_val = pad_val

    def __call__(self, results):
        """Call function to transform and format common fields in results.

        Args:
            results (dict): Result dict contains the data to convert.

        Returns:
            dict: The result dict contains the data that is formatted with \
                default bundle.
        """
        data_keys = [
            'joint_img',  # keypoints2d
            'smplx_joint_img',  #smplx_joint_img, # projected smplx if valid cam_param, else same as keypoints2d
            'joint_cam',  # joint_cam actually not used in any loss, # raw kps3d probably without ra
            'smplx_joint_cam',  # kps3d with body, face, hand ra
            'smplx_pose',
            'smplx_shape',
            'smplx_expr',
            'lhand_bbox_center',
            'lhand_bbox_size',
            'rhand_bbox_center',
            'rhand_bbox_size',
            'face_bbox_center',
            'face_bbox_size',
            'body_bbox_center',
            'body_bbox_size',
            'joint_valid',
            'joint_trunc',
            'smplx_joint_valid',
            'smplx_joint_trunc',
            'smplx_pose_valid',
            'smplx_shape_valid',
            'smplx_expr_valid',
            'is_3D',
            'lhand_bbox_valid',
            'rhand_bbox_valid',
            'face_bbox_valid',
            'body_bbox_valid',
            'body_bbox',
            'lhand_bbox',
            'rhand_bbox',
            'face_bbox',
            'gender',
            'bb2img_trans',
            'img2bb_trans',
            'ann_idx'
        ]
        if 'img' in results:
            img = results['img']
            if self.img_to_float is True and img.dtype == np.uint8:
                # Normally, image is of uint8 type without normalization.
                # At this time, it needs to be forced to be converted to
                # flot32, otherwise the model training and inference
                # will be wrong. Only used for YOLOX currently .
                img = img.astype(np.float32)
            # add default meta keys

            
            results = self._add_default_meta_keys(results)
            if len(img.shape) < 3:
                img = np.expand_dims(img, -1)
            
            img = np.ascontiguousarray(img.transpose(2, 0, 1))
            results['img'] = DC(to_tensor(img),
                                padding_value=self.pad_val['img'],
                                stack=True)
        for key in data_keys:
            if key not in results:
                continue
            results[key] = DC(to_tensor(results[key]))
        # if 'gt_masks' in results:
        #     results['gt_masks'] = DC(
        #         results['gt_masks'],
        #         padding_value=self.pad_val['masks'],
        #         cpu_only=True)
        # if 'gt_semantic_seg' in results:
        #     results['gt_semantic_seg'] = DC(
        #         to_tensor(results['gt_semantic_seg'][None, ...]),
        #         padding_value=self.pad_val['seg'],
        #         stack=True)
        return results

    def _add_default_meta_keys(self, results):
        """Add default meta keys.

        We set default meta keys including `pad_shape`, `scale_factor` and
        `img_norm_cfg` to avoid the case where no `Resize`, `Normalize` and
        `Pad` are implemented during the whole pipeline.

        Args:
            results (dict): Result dict contains the data to convert.

        Returns:
            results (dict): Updated result dict contains the data to convert.
        """
        img = results['img']
        results.setdefault('pad_shape', img.shape)
        results.setdefault('scale_factor', 1.0)
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results.setdefault(
            'img_norm_cfg',
            dict(mean=np.zeros(num_channels, dtype=np.float32),
                 std=np.ones(num_channels, dtype=np.float32),
                 to_rgb=False))
        return results

    def __repr__(self):
        return self.__class__.__name__ + \
               f'(img_to_float={self.img_to_float})'


class WrapFieldsToLists(object):
    """Wrap fields of the data dictionary into lists for evaluation.

    This class can be used as a last step of a test or validation
    pipeline for single image evaluation or inference.

    Example:
        >>> test_pipeline = [
        >>>    dict(type='LoadImageFromFile'),
        >>>    dict(type='Normalize',
                    mean=[123.675, 116.28, 103.53],
                    std=[58.395, 57.12, 57.375],
                    to_rgb=True),
        >>>    dict(type='ImageToTensor', keys=['img']),
        >>>    dict(type='Collect', keys=['img']),
        >>>    dict(type='WrapIntoLists')
        >>> ]
    """
    def __call__(self, results):
        # Wrap dict fields into lists
        for key, val in results.items():
            results[key] = [val]
        return results

    def __repr__(self):
        return f'{self.__class__.__name__}()'