Spaces:
Running
on
L40S
Running
on
L40S
File size: 8,568 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
version: 2.1
#examples:
#https://github.com/facebookresearch/ParlAI/blob/master/.circleci/config.yml
#https://github.com/facebookresearch/hydra/blob/master/.circleci/config.yml
#https://github.com/facebookresearch/habitat-api/blob/master/.circleci/config.yml
#drive tests with nox or tox or pytest?
# -------------------------------------------------------------------------------------
# environments where we run our jobs
# -------------------------------------------------------------------------------------
setupcuda: &setupcuda
run:
name: Setup CUDA
working_directory: ~/
command: |
# download and install nvidia drivers, cuda, etc
wget --no-verbose --no-clobber -P ~/nvidia-downloads https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.19.01_linux.run
sudo sh ~/nvidia-downloads/cuda_11.3.1_465.19.01_linux.run --silent
echo "Done installing CUDA."
pyenv versions
nvidia-smi
pyenv global 3.9.1
binary_common: &binary_common
parameters:
# Edit these defaults to do a release`
build_version:
description: "version number of release binary; by default, build a nightly"
type: string
default: ""
pytorch_version:
description: "PyTorch version to build against; by default, use a nightly"
type: string
default: ""
# Don't edit these
python_version:
description: "Python version to build against (e.g., 3.7)"
type: string
cu_version:
description: "CUDA version to build against, in CU format (e.g., cpu or cu100)"
type: string
wheel_docker_image:
description: "Wheel only: what docker image to use"
type: string
default: "pytorch/manylinux-cuda101"
conda_docker_image:
description: "what docker image to use for docker"
type: string
default: "pytorch/conda-cuda"
environment:
PYTHON_VERSION: << parameters.python_version >>
BUILD_VERSION: << parameters.build_version >>
PYTORCH_VERSION: << parameters.pytorch_version >>
CU_VERSION: << parameters.cu_version >>
TESTRUN_DOCKER_IMAGE: << parameters.conda_docker_image >>
jobs:
main:
environment:
CUDA_VERSION: "11.3"
resource_class: gpu.nvidia.small.multi
machine:
image: ubuntu-2004:202101-01
steps:
- checkout
- <<: *setupcuda
- run: pip3 install --progress-bar off imageio wheel matplotlib 'pillow<7'
- run: pip3 install --progress-bar off torch==1.10.0+cu113 torchvision==0.11.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
# - run: conda create -p ~/conda_env python=3.7 numpy
# - run: conda activate ~/conda_env
# - run: conda install -c pytorch pytorch torchvision
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/fvcore'
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/iopath'
- run:
name: build
command: |
export LD_LIBRARY_PATH=$LD_LIBARY_PATH:/usr/local/cuda-11.3/lib64
python3 setup.py build_ext --inplace
- run: LD_LIBRARY_PATH=$LD_LIBARY_PATH:/usr/local/cuda-11.3/lib64 python -m unittest discover -v -s tests
- run: python3 setup.py bdist_wheel
binary_linux_wheel:
<<: *binary_common
docker:
- image: << parameters.wheel_docker_image >>
auth:
username: $DOCKERHUB_USERNAME
password: $DOCKERHUB_TOKEN
resource_class: 2xlarge+
steps:
- checkout
- run: MAX_JOBS=15 packaging/build_wheel.sh
- store_artifacts:
path: dist
- persist_to_workspace:
root: dist
paths:
- "*"
binary_linux_conda:
<<: *binary_common
docker:
- image: "<< parameters.conda_docker_image >>"
auth:
username: $DOCKERHUB_USERNAME
password: $DOCKERHUB_TOKEN
resource_class: 2xlarge+
steps:
- checkout
# This is building with cuda but no gpu present,
# so we aren't running the tests.
- run:
name: build
no_output_timeout: 20m
command: MAX_JOBS=15 TEST_FLAG=--no-test packaging/build_conda.sh
- store_artifacts:
path: /opt/conda/conda-bld/linux-64
- persist_to_workspace:
root: /opt/conda/conda-bld/linux-64
paths:
- "*"
binary_linux_conda_cuda:
<<: *binary_common
machine:
image: ubuntu-1604:201903-01
resource_class: gpu.nvidia.small.multi
steps:
- checkout
- run:
name: Setup environment
command: |
set -e
curl -L https://packagecloud.io/circleci/trusty/gpgkey | sudo apt-key add -
curl -L https://dl.google.com/linux/linux_signing_key.pub | sudo apt-key add -
sudo apt-get update
sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
gnupg-agent \
software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"
sudo apt-get update
export DOCKER_VERSION="5:19.03.2~3-0~ubuntu-xenial"
sudo apt-get install docker-ce=${DOCKER_VERSION} docker-ce-cli=${DOCKER_VERSION} containerd.io=1.2.6-3
# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
export NVIDIA_CONTAINER_VERSION="1.0.3-1"
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit=${NVIDIA_CONTAINER_VERSION}
sudo systemctl restart docker
DRIVER_FN="NVIDIA-Linux-x86_64-460.84.run"
wget "https://us.download.nvidia.com/XFree86/Linux-x86_64/460.84/$DRIVER_FN"
sudo /bin/bash "$DRIVER_FN" -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
nvidia-smi
- run:
name: Pull docker image
command: |
set -e
{ docker login -u="$DOCKERHUB_USERNAME" -p="$DOCKERHUB_TOKEN" ; } 2> /dev/null
echo Pulling docker image $TESTRUN_DOCKER_IMAGE
docker pull $TESTRUN_DOCKER_IMAGE
- run:
name: Build and run tests
no_output_timeout: 20m
command: |
set -e
cd ${HOME}/project/
export JUST_TESTRUN=1
VARS_TO_PASS="-e PYTHON_VERSION -e BUILD_VERSION -e PYTORCH_VERSION -e CU_VERSION -e JUST_TESTRUN"
docker run --gpus all --ipc=host -v $(pwd):/remote -w /remote ${VARS_TO_PASS} ${TESTRUN_DOCKER_IMAGE} ./packaging/build_conda.sh
binary_macos_wheel:
<<: *binary_common
macos:
xcode: "12.0"
steps:
- checkout
- run:
# Cannot easily deduplicate this as source'ing activate
# will set environment variables which we need to propagate
# to build_wheel.sh
command: |
curl -o conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh conda.sh -b
source $HOME/miniconda3/bin/activate
packaging/build_wheel.sh
- store_artifacts:
path: dist
workflows:
version: 2
build_and_test:
jobs:
# - main:
# context: DOCKERHUB_TOKEN
{{workflows()}}
- binary_linux_conda_cuda:
name: testrun_conda_cuda_py37_cu102_pyt170
context: DOCKERHUB_TOKEN
python_version: "3.7"
pytorch_version: '1.7.0'
cu_version: "cu102"
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py36_cpu
python_version: '3.6'
pytorch_version: '1.9.0'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py37_cpu
python_version: '3.7'
pytorch_version: '1.9.0'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py38_cpu
python_version: '3.8'
pytorch_version: '1.9.0'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py39_cpu
python_version: '3.9'
pytorch_version: '1.9.0'
|