File size: 12,236 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch, os
from scipy.optimize import linear_sum_assignment
from torch import nn
from .utils import OKSLoss
import numpy as np
from util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou


class HungarianMatcher(nn.Module):
    def __init__(self,
                 cost_class: float = 1,
                 cost_bbox: float = 1,
                 cost_giou: float = 1,
                 focal_alpha=0.25,
                 cost_keypoints=1.0,
                 cost_kpvis=0.1,
                 cost_oks=0.01,
                 num_body_points=17):
        super().__init__()
        self.cost_class = cost_class
        self.cost_bbox = cost_bbox
        self.cost_giou = cost_giou
        assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, 'all costs cant be 0'
        self.cost_keypoints = cost_keypoints
        self.cost_kpvis = cost_kpvis
        self.cost_oks = cost_oks
        self.focal_alpha = focal_alpha
        self.num_body_points = num_body_points
        if num_body_points == 17:
            self.sigmas = np.array([
                .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07,
                1.07, .87, .87, .89, .89
            ],
                                   dtype=np.float32) / 10.0

        elif num_body_points == 14:
            self.sigmas = np.array([
                .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89,
                .79, .79
            ]) / 10.0
        else:
            raise ValueError(f'Unsupported keypoints number {num_keypoints}')

    @torch.no_grad()
    def forward(self, outputs, targets, data_batch=None):
        bs, num_queries = outputs['pred_logits'].shape[:2]
        out_prob = outputs['pred_logits'].flatten(0, 1).sigmoid()
        out_bbox = outputs['pred_boxes'].flatten(0, 1)
        
        out_keypoints = outputs['pred_keypoints'].flatten(0, 1)

        # Also concat the target labels and boxes
        tgt_ids = torch.cat([v['labels'] for v in targets])
        tgt_bbox = torch.cat([v['boxes'] for v in targets])
        tgt_keypoints = torch.cat([v['keypoints'] for v in targets])
        tgt_area = torch.cat([v['area'] for v in targets])
        # Compute the classification cost.
        alpha = self.focal_alpha
        gamma = 2.0
        neg_cost_class = (1 - alpha) * (out_prob**
                                        gamma) * (-(1 - out_prob + 1e-8).log())
        pos_cost_class = alpha * (
            (1 - out_prob)**gamma) * (-(out_prob + 1e-8).log())
        cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids]

        # Compute the L1 cost between boxes
        cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)

        # Compute the giou cost betwen boxes
        
        cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox),
                                         box_cxcywh_to_xyxy(tgt_bbox), data_batch)

        # compute the keypoint costs
        Z_pred = out_keypoints[:, 0:(self.num_body_points * 2)]
        V_pred = out_keypoints[:, (self.num_body_points * 2):]
        Z_gt = tgt_keypoints[:, 0:(self.num_body_points * 2)]
        V_gt: torch.Tensor = tgt_keypoints[:, (self.num_body_points * 2):]
        if Z_pred.sum() > 0:
            sigmas = Z_pred.new_tensor(self.sigmas)
            variances = (sigmas * 2)**2
            kpt_preds = Z_pred.reshape(-1, Z_pred.size(-1) // 2, 2)
            kpt_gts = Z_gt.reshape(-1, Z_gt.size(-1) // 2, 2)
            squared_distance = (kpt_preds[:, None, :, 0] - kpt_gts[None, :, :, 0]) ** 2 + \
                               (kpt_preds[:, None, :, 1] - kpt_gts[None, :, :, 1]) ** 2
            squared_distance0 = squared_distance / (tgt_area[:, None] *
                                                    variances[None, :] * 2)
            squared_distance1 = torch.exp(-squared_distance0)
            squared_distance1 = squared_distance1 * V_gt
            oks = squared_distance1.sum(dim=-1) / (V_gt.sum(dim=-1) + 1e-6)
            oks = oks.clamp(min=1e-6)
            cost_oks = 1 - oks
            # import pdb; pdb.set_trace()
            cost_keypoints = torch.abs(Z_pred[:, None, :] - Z_gt[None])
            cost_keypoints = cost_keypoints * V_gt.repeat_interleave(
                2, dim=1)[None]
            cost_keypoints = cost_keypoints.sum(-1)
            cost_bbox = torch.zeros_like(cost_keypoints)
            cost_giou = torch.zeros_like(
                cost_keypoints)  # [bs*query, instance_num]
            C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou + self.cost_keypoints * cost_keypoints + self.cost_oks * cost_oks
            C = C.view(bs, num_queries, -1).cpu()

        else:
            cost_oks = torch.zeros_like(cost_bbox)
            cost_keypoints = torch.zeros_like(cost_bbox)
            C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou + self.cost_keypoints * cost_keypoints + self.cost_oks * cost_oks
            C = C.view(bs, num_queries, -1).cpu()

        sizes = [len(v['boxes']) for v in targets]
        indices = [
            linear_sum_assignment(c[i])
            for i, c in enumerate(C.split(sizes, -1))
        ]
            # import mmcv
            # import numpy as np
            # import cv2
            # from detrsmpl.core.visualization.visualize_keypoints2d import visualize_kp2d

            # img = mmcv.imdenormalize(
            #     img=(data_batch['img'][0].cpu().numpy()).transpose(1, 2, 0), 
            #     mean=np.array([123.675, 116.28, 103.53]), 
            #     std=np.array([58.395, 57.12, 57.375]),
            #     to_bgr=True).astype(np.uint8)
            # visualize_kp2d(
            #     (gt_2d).reshape(-1,2)[None], 
            #     output_path='./figs/gt2d', 
            #     image_array=img.copy()[None], 
            #     # data_source='smplx_137',
            #     disable_limbs = True,
            #     overwrite=True)

            # from util import box_ops
            # idx = [0, 1, 83]
            # pred_bbox_body = (box_ops.box_cxcywh_to_xyxy(outputs['pred_boxes'][idx]).reshape(-1,2).detach().cpu().numpy()*data_batch['img_shape'].cpu().numpy()[1, ::-1]).reshape(-1,4)
            # pred_bbox_lhand = (box_ops.box_cxcywh_to_xyxy(outputs['pred_lhand_boxes'][idx]).reshape(-1,2).detach().cpu().numpy()*data_batch['img_shape'].cpu().numpy()[1, ::-1]).reshape(-1,4)
            # pred_bbox_rhand = (box_ops.box_cxcywh_to_xyxy(outputs['pred_rhand_boxes'][idx]).reshape(-1,2).detach().cpu().numpy()*data_batch['img_shape'].cpu().numpy()[1, ::-1]).reshape(-1,4)
            # pred_bbox_face = (box_ops.box_cxcywh_to_xyxy(outputs['pred_face_boxes'][idx]).reshape(-1,2).detach().cpu().numpy()*data_batch['img_shape'].cpu().numpy()[1, ::-1]).reshape(-1,4)
            # pred_bbox = np.concatenate([pred_bbox_body,pred_bbox_face,pred_bbox_rhand,pred_bbox_lhand],axis=0)
            # img = mmcv.imshow_bboxes(img.copy(), pred_bbox, show=False)
            # cv2.imwrite('test1.png', img)
        if tgt_ids.shape[0] > 0:
            cost_mean_dict = {
                'class': cost_class.mean(),
                'bbox': cost_bbox.mean(),
                'giou': cost_giou.mean(),
                'keypoints': cost_keypoints.mean()
            }
        else:
            cost_mean_dict = {
                'class': torch.zeros_like(cost_class.mean()),
                'bbox': torch.zeros_like(cost_bbox.mean()),
                'giou': torch.zeros_like(cost_giou.mean()),
                'keypoints': torch.zeros_like(cost_keypoints.mean()),
            }

        return [(torch.as_tensor(i, dtype=torch.int64),
                 torch.as_tensor(j, dtype=torch.int64))
                for i, j in indices], cost_mean_dict


def build_matcher(args):
    if args.matcher_type == 'HungarianMatcher':
        return HungarianMatcher(cost_class=args.set_cost_class,
                                cost_bbox=args.set_cost_bbox,
                                cost_giou=args.set_cost_giou,
                                focal_alpha=args.focal_alpha,
                                cost_keypoints=args.set_cost_keypoints,
                                cost_kpvis=args.set_cost_kpvis,
                                cost_oks=args.set_cost_oks,
                                num_body_points=args.num_body_points)
    elif args.matcher_type == 'HungarianMatcherBox':
        return HungarianMatcherBox(cost_class=args.set_cost_class,
                                cost_bbox=args.set_cost_bbox,
                                cost_giou=args.set_cost_giou,
                                focal_alpha=args.focal_alpha)
    else:
        raise NotImplementedError('Unknown args.matcher_type: {}'.format(
            args.matcher_type))




class HungarianMatcherBox(nn.Module):
    def __init__(self,
                 cost_class: float = 1,
                 cost_bbox: float = 1,
                 cost_giou: float = 1,
                 focal_alpha=0.25,
                 cost_keypoints=1.0,
                 cost_kpvis=0.1,
                 cost_oks=0.01,
                 num_body_points=17):
        super().__init__()
        self.cost_class = cost_class
        self.cost_bbox = cost_bbox
        self.cost_giou = cost_giou
        assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, 'all costs cant be 0'
        self.cost_keypoints = cost_keypoints
        self.cost_kpvis = cost_kpvis
        self.cost_oks = cost_oks
        self.focal_alpha = focal_alpha
        self.num_body_points = num_body_points
        if num_body_points == 17:
            self.sigmas = np.array([
                .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07,
                1.07, .87, .87, .89, .89
            ],
                                   dtype=np.float32) / 10.0

        elif num_body_points == 14:
            self.sigmas = np.array([
                .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89,
                .79, .79
            ]) / 10.0
        else:
            raise ValueError(f'Unsupported keypoints number {num_keypoints}')

    @torch.no_grad()
    def forward(self, outputs, targets):
        bs, num_queries = outputs['pred_logits'].shape[:2]
        out_prob = outputs['pred_logits'].flatten(0, 1).sigmoid()
        out_bbox = outputs['pred_boxes'].flatten(0, 1)


        # Also concat the target labels and boxes
        tgt_ids = torch.cat([v['labels'] for v in targets])
        tgt_bbox = torch.cat([v['boxes'] for v in targets])

        # Compute the classification cost.
        alpha = self.focal_alpha
        gamma = 2.0
        neg_cost_class = (1 - alpha) * (out_prob**
                                        gamma) * (-(1 - out_prob + 1e-8).log())
        pos_cost_class = alpha * (
            (1 - out_prob)**gamma) * (-(out_prob + 1e-8).log())
        cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids]

        # Compute the L1 cost between boxes
        cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)

        # Compute the giou cost betwen boxes
        cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox),
                                         box_cxcywh_to_xyxy(tgt_bbox))


        cost_oks = torch.zeros_like(cost_bbox)
        cost_keypoints = torch.zeros_like(cost_bbox)
        C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
        C = C.view(bs, num_queries, -1).cpu()

        sizes = [len(v['boxes']) for v in targets]
        indices = [
            linear_sum_assignment(c[i])
            for i, c in enumerate(C.split(sizes, -1))
        ]

        if tgt_ids.shape[0] > 0:
            cost_mean_dict = {
                'class': cost_class.mean(),
                'bbox': cost_bbox.mean(),
                'giou': cost_giou.mean(),
            }
        else:
            cost_mean_dict = {
                'class': torch.zeros_like(cost_class.mean()),
                'bbox': torch.zeros_like(cost_bbox.mean()),
                'giou': torch.zeros_like(cost_giou.mean()),
            }

        return [(torch.as_tensor(i, dtype=torch.int64),
                 torch.as_tensor(j, dtype=torch.int64))
                for i, j in indices], cost_mean_dict