Spaces:
Starting
on
L40S
Starting
on
L40S
File size: 34,533 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings
from functools import partial
import numpy as np
import onnx
import onnxruntime as rt
import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
from packaging import version
onnx_file = 'tmp.onnx'
if torch.__version__ == 'parrots':
pytest.skip('not supported in parrots now', allow_module_level=True)
@pytest.fixture(autouse=True)
def run_before_and_after_test():
# clear onnx_file before test
if os.path.exists(onnx_file):
os.remove(onnx_file)
yield
# clear onnx_file after test
if os.path.exists(onnx_file):
os.remove(onnx_file)
class WrapFunction(nn.Module):
def __init__(self, wrapped_function):
super().__init__()
self.wrapped_function = wrapped_function
def forward(self, *args, **kwargs):
return self.wrapped_function(*args, **kwargs)
def process_grid_sample(func, input, grid, ort_custom_op_path=''):
wrapped_model = WrapFunction(func).eval()
input_names = ['input', 'grid']
output_names = ['output']
with torch.no_grad():
torch.onnx.export(
wrapped_model, (input, grid),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
opset_version=11)
onnx_model = onnx.load(onnx_file)
session_options = rt.SessionOptions()
if ort_custom_op_path:
session_options.register_custom_ops_library(ort_custom_op_path)
# get onnx output
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [node.name for node in onnx_model.graph.initializer]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 2)
sess = rt.InferenceSession(onnx_file, session_options)
ort_result = sess.run(None, {
'input': input.detach().numpy(),
'grid': grid.detach().numpy()
})
pytorch_results = wrapped_model(input.clone(), grid.clone())
assert np.allclose(pytorch_results, ort_result, atol=1e-3)
@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
@pytest.mark.parametrize('align_corners', [True, False])
def test_grid_sample(mode, padding_mode, align_corners):
from mmcv.onnx.symbolic import register_extra_symbolics
opset_version = 11
register_extra_symbolics(opset_version)
from mmcv.ops import get_onnxruntime_op_path
ort_custom_op_path = get_onnxruntime_op_path()
if not os.path.exists(ort_custom_op_path):
pytest.skip('custom ops for onnxruntime are not compiled.')
input = torch.rand(1, 1, 10, 10)
grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
grid = F.affine_grid(
grid, (1, 1, 15, 15), align_corners=align_corners).type_as(input)
def func(input, grid):
return F.grid_sample(
input,
grid,
mode=mode,
padding_mode=padding_mode,
align_corners=align_corners)
return process_grid_sample(func, input, grid, ort_custom_op_path)
@pytest.mark.parametrize('align_corners', [True, False])
def test_bilinear_grid_sample(align_corners):
from mmcv.ops.point_sample import bilinear_grid_sample
# only support pytorch >= 1.5.0
if version.parse(torch.__version__) < version.parse('1.5.0'):
pytest.skip('Only support PyTorch >= 1.5.0')
input = torch.rand(1, 1, 10, 10)
grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
grid = F.affine_grid(
grid, (1, 1, 15, 15), align_corners=align_corners).type_as(input)
def func(input, grid):
return bilinear_grid_sample(input, grid, align_corners=align_corners)
return process_grid_sample(func, input, grid)
def test_nms():
from mmcv.ops import get_onnxruntime_op_path, nms
np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
[3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
dtype=np.float32)
np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
boxes = torch.from_numpy(np_boxes)
scores = torch.from_numpy(np_scores)
nms = partial(
nms, iou_threshold=0.3, offset=0, score_threshold=0, max_num=0)
pytorch_dets, _ = nms(boxes, scores)
pytorch_score = pytorch_dets[:, 4]
wrapped_model = WrapFunction(nms)
wrapped_model.cpu().eval()
with torch.no_grad():
torch.onnx.export(
wrapped_model, (boxes, scores),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['boxes', 'scores'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
ort_custom_op_path = get_onnxruntime_op_path()
session_options = rt.SessionOptions()
if os.path.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
# get onnx output
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [node.name for node in onnx_model.graph.initializer]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 2)
sess = rt.InferenceSession(onnx_file, session_options)
onnx_dets, _ = sess.run(None, {
'scores': scores.detach().numpy(),
'boxes': boxes.detach().numpy()
})
onnx_score = onnx_dets[:, 4]
assert np.allclose(pytorch_score, onnx_score, atol=1e-3)
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_softnms():
from mmcv.ops import get_onnxruntime_op_path, soft_nms
# only support pytorch >= 1.7.0
if version.parse(torch.__version__) < version.parse('1.7.0'):
warnings.warn('test_softnms should be ran with pytorch >= 1.7.0')
return
# only support onnxruntime >= 1.5.1
assert version.parse(rt.__version__) >= version.parse(
'1.5.1'), 'test_softnms should be ran with onnxruntime >= 1.5.1'
ort_custom_op_path = get_onnxruntime_op_path()
if not os.path.exists(ort_custom_op_path):
pytest.skip('softnms for onnxruntime is not compiled.')
np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
[3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
dtype=np.float32)
np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
boxes = torch.from_numpy(np_boxes)
scores = torch.from_numpy(np_scores)
configs = [[0.3, 0.5, 0.01, 'linear'], [0.3, 0.5, 0.01, 'gaussian'],
[0.3, 0.5, 0.01, 'naive']]
session_options = rt.SessionOptions()
session_options.register_custom_ops_library(ort_custom_op_path)
for _iou_threshold, _sigma, _min_score, _method in configs:
pytorch_dets, pytorch_inds = soft_nms(
boxes,
scores,
iou_threshold=_iou_threshold,
sigma=_sigma,
min_score=_min_score,
method=_method)
nms = partial(
soft_nms,
iou_threshold=_iou_threshold,
sigma=_sigma,
min_score=_min_score,
method=_method)
wrapped_model = WrapFunction(nms)
wrapped_model.cpu().eval()
with torch.no_grad():
torch.onnx.export(
wrapped_model, (boxes, scores),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['boxes', 'scores'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
# get onnx output
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [
node.name for node in onnx_model.graph.initializer
]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 2)
sess = rt.InferenceSession(onnx_file, session_options)
onnx_dets, onnx_inds = sess.run(None, {
'scores': scores.detach().numpy(),
'boxes': boxes.detach().numpy()
})
assert np.allclose(pytorch_dets, onnx_dets, atol=1e-3)
assert np.allclose(onnx_inds, onnx_inds, atol=1e-3)
def test_roialign():
try:
from mmcv.ops import get_onnxruntime_op_path, roi_align
except (ImportError, ModuleNotFoundError):
pytest.skip('roi_align op is not successfully compiled')
ort_custom_op_path = get_onnxruntime_op_path()
# roi align config
pool_h = 2
pool_w = 2
spatial_scale = 1.0
sampling_ratio = 2
inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
([[[[1., 2.], [3., 4.]], [[4., 3.],
[2., 1.]]]], [[0., 0., 0., 1., 1.]]),
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
[11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
def warpped_function(torch_input, torch_rois):
return roi_align(torch_input, torch_rois, (pool_w, pool_h),
spatial_scale, sampling_ratio, 'avg', True)
for case in inputs:
np_input = np.array(case[0], dtype=np.float32)
np_rois = np.array(case[1], dtype=np.float32)
input = torch.from_numpy(np_input)
rois = torch.from_numpy(np_rois)
# compute pytorch_output
with torch.no_grad():
pytorch_output = roi_align(input, rois, (pool_w, pool_h),
spatial_scale, sampling_ratio, 'avg',
True)
# export and load onnx model
wrapped_model = WrapFunction(warpped_function)
with torch.no_grad():
torch.onnx.export(
wrapped_model, (input, rois),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input', 'rois'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
session_options = rt.SessionOptions()
if os.path.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
# compute onnx_output
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [
node.name for node in onnx_model.graph.initializer
]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 2)
sess = rt.InferenceSession(onnx_file, session_options)
onnx_output = sess.run(None, {
'input': input.detach().numpy(),
'rois': rois.detach().numpy()
})
onnx_output = onnx_output[0]
# allclose
assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
def test_roialign_rotated():
try:
from mmcv.ops import get_onnxruntime_op_path, roi_align_rotated
except (ImportError, ModuleNotFoundError):
pytest.skip('roi_align_aligned op is not successfully compiled')
ort_custom_op_path = get_onnxruntime_op_path()
if not os.path.exists(ort_custom_op_path):
pytest.skip('custom ops for onnxruntime are not compiled.')
# roi align config
pool_h = 2
pool_w = 2
spatial_scale = 1.0
sampling_ratio = 2
inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0.5, 0.5, 1., 1., 0]]),
([[[[1., 2.], [3., 4.]]]], [[0., 0.5, 0.5, 1., 1., np.pi / 2]]),
([[[[1., 2.], [3., 4.]],
[[4., 3.], [2., 1.]]]], [[0., 0.5, 0.5, 1., 1., 0]]),
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
[11., 12., 15., 16.]]]], [[0., 1.5, 1.5, 3., 3., 0]]),
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
[11., 12., 15., 16.]]]], [[0., 1.5, 1.5, 3., 3.,
np.pi / 2]])]
def warpped_function(torch_input, torch_rois):
return roi_align_rotated(torch_input, torch_rois, (pool_w, pool_h),
spatial_scale, sampling_ratio, True, False)
for case in inputs:
np_input = np.array(case[0], dtype=np.float32)
np_rois = np.array(case[1], dtype=np.float32)
input = torch.from_numpy(np_input)
rois = torch.from_numpy(np_rois)
# compute pytorch_output
with torch.no_grad():
pytorch_output = roi_align_rotated(input, rois, (pool_w, pool_h),
spatial_scale, sampling_ratio,
True, False)
# export and load onnx model
wrapped_model = WrapFunction(warpped_function)
with torch.no_grad():
torch.onnx.export(
wrapped_model, (input, rois),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['features', 'rois'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
session_options = rt.SessionOptions()
if os.path.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
# compute onnx_output
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [
node.name for node in onnx_model.graph.initializer
]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 2)
sess = rt.InferenceSession(onnx_file, session_options)
onnx_output = sess.run(None, {
'features': input.detach().numpy(),
'rois': rois.detach().numpy()
})
onnx_output = onnx_output[0]
# allclose
assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_roipool():
from mmcv.ops import roi_pool
# roi pool config
pool_h = 2
pool_w = 2
spatial_scale = 1.0
inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
([[[[1., 2.], [3., 4.]], [[4., 3.],
[2., 1.]]]], [[0., 0., 0., 1., 1.]]),
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
[11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
def warpped_function(torch_input, torch_rois):
return roi_pool(torch_input, torch_rois, (pool_w, pool_h),
spatial_scale)
for case in inputs:
np_input = np.array(case[0], dtype=np.float32)
np_rois = np.array(case[1], dtype=np.float32)
input = torch.from_numpy(np_input).cuda()
rois = torch.from_numpy(np_rois).cuda()
# compute pytorch_output
with torch.no_grad():
pytorch_output = roi_pool(input, rois, (pool_w, pool_h),
spatial_scale)
pytorch_output = pytorch_output.cpu()
# export and load onnx model
wrapped_model = WrapFunction(warpped_function)
with torch.no_grad():
torch.onnx.export(
wrapped_model, (input, rois),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input', 'rois'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
# compute onnx_output
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [
node.name for node in onnx_model.graph.initializer
]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 2)
sess = rt.InferenceSession(onnx_file)
onnx_output = sess.run(
None, {
'input': input.detach().cpu().numpy(),
'rois': rois.detach().cpu().numpy()
})
onnx_output = onnx_output[0]
# allclose
assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
def test_interpolate():
from mmcv.onnx.symbolic import register_extra_symbolics
opset_version = 11
register_extra_symbolics(opset_version)
def func(feat, scale_factor=2):
out = F.interpolate(feat, scale_factor=scale_factor)
return out
net = WrapFunction(func)
net = net.cpu().eval()
dummy_input = torch.randn(2, 4, 8, 8).cpu()
torch.onnx.export(
net,
dummy_input,
onnx_file,
input_names=['input'],
opset_version=opset_version)
sess = rt.InferenceSession(onnx_file)
onnx_result = sess.run(None, {'input': dummy_input.detach().numpy()})
pytorch_result = func(dummy_input).detach().numpy()
assert np.allclose(pytorch_result, onnx_result, atol=1e-3)
def test_rotated_feature_align():
if torch.__version__ == 'parrots':
pytest.skip('onnx is not supported in parrots directly')
try:
from mmcv.ops import get_onnxruntime_op_path, rotated_feature_align
except (ImportError, ModuleNotFoundError):
pytest.skip('rotated_feature_align op is not successfully compiled')
ort_custom_op_path = get_onnxruntime_op_path()
if not os.path.exists(ort_custom_op_path):
pytest.skip('custom ops for onnxruntime are not compiled.')
spatial_scale = 1.0 / 8
points = 1
def warpped_function(feature, bbox):
return rotated_feature_align(
feature, bbox, spatial_scale=spatial_scale, points=points)
feature = torch.tensor([[[[1.2924, -0.2172, -0.5222, 0.1172],
[0.9144, 1.2248, 1.3115, -0.9690],
[-0.8949, -1.1797, -0.9093, -0.3961],
[-0.4586, 0.5062, -0.7947, -0.7397]],
[[-1.0943, -0.7495, 1.3461, -1.1652],
[0.2034, 0.6763, -1.2357, 0.5231],
[-1.0062, 1.2592, 1.4225, -0.3951],
[-0.1242, -1.6240, 0.1932, 2.7181]],
[[-1.6271, -1.0276, 0.0578, -0.2997],
[-0.9684, -1.6946, -1.3188, -1.1938],
[-1.6744, -0.8917, -0.6556, 1.0073],
[-0.1205, 0.3671, -0.3731, -0.5347]]],
[[[0.7035, 0.2089, -0.1774, 3.4670],
[-0.8505, -0.9278, 1.4714, 0.1644],
[0.0898, 0.3531, -0.4007, 0.1927],
[1.2569, -0.2636, -0.5223, 0.0616]],
[[0.1760, -0.7639, -0.4600, -1.3260],
[-0.9921, -0.2970, -0.8955, 1.0508],
[1.3515, -0.1641, 1.9679, 1.1986],
[-0.3616, 0.6287, 0.4933, 0.3360]],
[[-0.5860, 0.2124, -0.8700, 2.4200],
[-0.0551, -1.5103, -1.6779, 0.8399],
[0.8431, 1.2414, -1.1243, -0.3887],
[-2.1254, 0.6047, -0.3515, 0.7254]]]])
bbox = torch.tensor(
[[[[1.3080e+01, 1.2688e+01, 1.1214e+01, 9.3944e+01, -9.1905e-01],
[3.8104e+01, 1.0134e+01, 1.4659e+02, 9.0306e+01, -9.8211e-01],
[-5.3213e+01, 4.9508e+01, 5.1513e+01, 3.2055e+01, -3.1954e-01],
[2.6974e+01, 2.5248e+01, 5.4495e+01, 3.1083e+00, -6.2127e-01]],
[[-1.5604e+01, -5.1908e+01, 2.3998e+02, 1.5008e+01, -1.2546e+00],
[3.1354e+01, -7.3635e+00, 6.7879e+01, 3.5081e+01, -3.3851e-01],
[-5.3292e+00, 9.1946e+00, 1.2834e+01, 1.0485e+01, -1.3039e+00],
[-2.3925e+01, 3.6623e+01, 3.9875e+01, 7.2009e+01, -6.5934e-01]],
[[7.2114e+01, -2.3781e+01, 2.9106e+01, 8.4501e+01, -1.1340e+00],
[2.6258e+01, -7.7034e+00, 1.7629e+02, 1.0615e+02, -1.2156e+00],
[3.8057e+01, 4.6016e+01, 1.2965e+01, 6.9384e+00, -1.0855e+00],
[2.4428e+01, -1.6189e+01, 2.0572e+02, 3.1622e+01, -1.5719e-01]],
[[3.8226e+00, 2.9608e+01, 1.4457e+01, 6.8179e+01, -9.1997e-01],
[2.5003e+01, -4.2490e+01, 9.6007e+01, 4.9086e+01, -1.4786e+00],
[8.5983e+01, 5.4980e+01, 7.8080e+01, 1.0003e+02, -1.0926e+00],
[9.9065e+00, 4.1457e+01, 5.9799e+00, 1.7973e+01, -5.6313e-01]]],
[[[-1.8244e+01, 4.6309e+00, 5.3010e+01, 2.4310e+01, -7.0345e-01],
[1.9419e+01, 3.6704e+01, 5.2390e+01, 5.4133e+01, -3.7730e-01],
[5.6387e+01, 2.3752e+01, 9.0441e+00, 1.7792e+01, -1.5583e+00],
[3.6303e+01, 1.6396e+01, 2.0283e+01, 1.9148e+01, -8.3419e-01]],
[[3.2169e+01, 3.0521e+01, 2.6283e+01, 1.9680e+02, -3.0454e-01],
[2.5788e+01, -3.2189e+01, 8.8882e+01, 1.0207e+02, -1.5328e+00],
[8.4676e+00, -1.6668e+01, 2.4657e+01, 1.1275e+02, -4.0388e-01],
[-1.0799e+01, 6.0422e+00, 9.5807e+00, 3.3677e+01, -3.5438e-01]],
[[6.9363e+01, 1.0850e+01, 2.5968e+01, 2.2311e+01, -1.6408e-01],
[2.8140e+00, 4.6843e+00, 3.1289e+00, 2.1480e+01, -6.7583e-01],
[2.6661e+01, 4.5290e+01, 6.1679e+00, 3.0005e+01, -8.9806e-01],
[5.0871e+00, 1.3234e+01, 9.2087e+01, 4.9622e+01, -2.8020e-01]],
[[-1.2643e+01, 2.5176e+01, 5.0488e+01, 5.4246e+01, -4.4840e-01],
[-3.4521e+01, 9.8435e-01, 5.2413e+01, 9.7996e+00, -8.4218e-01],
[4.9829e+01, -1.0808e+01, 2.9848e+01, 7.3579e+01, -6.2672e-01],
[8.0446e+01, 2.8064e+01, 4.5273e+01, 5.3809e+01, -1.2359e+00]]]])
# compute pytorch_output
with torch.no_grad():
pytorch_output = rotated_feature_align(
feature, bbox, spatial_scale=spatial_scale, points=points)
# export and load onnx model
wrapped_model = WrapFunction(warpped_function)
with torch.no_grad():
torch.onnx.export(
wrapped_model, (feature, bbox),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['feature', 'bbox'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
session_options = rt.SessionOptions()
if os.path.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
# compute onnx_output
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [node.name for node in onnx_model.graph.initializer]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 2)
sess = rt.InferenceSession(onnx_file, session_options)
onnx_output = sess.run(None, {
'feature': feature.detach().numpy(),
'bbox': bbox.detach().numpy()
})
onnx_output = onnx_output[0]
# allclose
assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
@pytest.mark.parametrize('mode', ['top', 'bottom', 'left', 'right'])
def test_corner_pool(mode, opset=11):
from mmcv.ops import get_onnxruntime_op_path
ort_custom_op_path = get_onnxruntime_op_path()
if not os.path.exists(ort_custom_op_path):
pytest.skip('custom ops for onnxruntime are not compiled.')
from mmcv.ops.corner_pool import CornerPool
def corner_pool_func(input):
corner_pool_module = CornerPool(mode)
return corner_pool_module.corner_pool.apply(input)
wrapped_model = WrapFunction(corner_pool_func).eval()
input = torch.rand((2, 3, 9, 12)) # (n,c,h,w)
with torch.no_grad():
torch.onnx.export(
wrapped_model,
input,
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input'],
output_names=['output'],
opset_version=opset)
onnx_model = onnx.load(onnx_file)
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [node.name for node in onnx_model.graph.initializer]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 1)
session_options = rt.SessionOptions()
session_options.register_custom_ops_library(ort_custom_op_path)
sess = rt.InferenceSession(onnx_file, session_options)
ort_result = sess.run(None, {'input': input.detach().numpy()})
pytorch_results = wrapped_model(input.clone())
assert np.allclose(pytorch_results, ort_result, atol=1e-5)
@pytest.mark.parametrize('key', ['cummax', 'cummin'])
def test_cummax_cummin(key, opset=11):
# Note generally `cummax` or `cummin` is exportable to ONNX
# as long as the pytorch version >= 1.5.0, since `torch.cummax`
# is only supported with torch >= 1.5.0.
# But when `cummax` or `cummin` serves as an intermediate component
# whose outputs is used as inputs for another modules, it's expected
# that pytorch version must be >= 1.7.0. Otherwise error appears like:
# `RuntimeError: tuple appears in op that does not forward tuples,
# unsupported 'kind: prim::PythonOp`.
if version.parse(torch.__version__) < version.parse('1.7.0'):
pytest.skip('test_cummax_cummin should be ran with pytorch >= 1.7.0')
# register custom op `mmcv::cummax` and `mmcv::cummin`
from mmcv.onnx.symbolic import register_extra_symbolics
register_extra_symbolics(opset)
from mmcv.ops import get_onnxruntime_op_path
ort_custom_op_path = get_onnxruntime_op_path()
if not os.path.exists(ort_custom_op_path):
pytest.skip('custom ops for onnxruntime are not compiled.')
input_list = [
# arbitrary shape, e.g. 1-D, 2-D, 3-D, ...
torch.rand((2, 3, 4, 1, 5)),
torch.rand(1),
torch.rand((2, 0, 1)), # tensor.numel() is 0
torch.FloatTensor(), # empty tensor
]
cummax_cummin_funcs = {'cummax': torch.cummax, 'cummin': torch.cummin}
for input in input_list:
ndims = input.dim()
# valid dim range is [-ndims, ndims-1]
# test for all `dim` value which is valid
for dim in range(-ndims, ndims):
cummax_func = partial(cummax_cummin_funcs[key], dim=dim)
wrapped_model = WrapFunction(cummax_func).eval()
with torch.no_grad():
torch.onnx.export(
wrapped_model,
input,
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input'],
output_names=['output', 'indices'],
opset_version=opset)
onnx_model = onnx.load(onnx_file)
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [
node.name for node in onnx_model.graph.initializer
]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 1)
session_options = rt.SessionOptions()
session_options.register_custom_ops_library(ort_custom_op_path)
sess = rt.InferenceSession(onnx_file, session_options)
ort_output, ort_inds = sess.run(None,
{'input': input.detach().numpy()})
pytorch_output, pytorch_inds = wrapped_model(input.clone())
pytorch_output = pytorch_output.detach().numpy()
pytorch_inds = pytorch_inds.detach().numpy()
assert np.allclose(pytorch_output, ort_output, atol=1e-5)
assert np.all(pytorch_inds == ort_inds)
@pytest.mark.parametrize('shifts_dims_pair', [([-3, 5], [2, 0]), (5, None)])
def test_roll(shifts_dims_pair):
opset = 11
from mmcv.onnx.symbolic import register_extra_symbolics
register_extra_symbolics(opset)
input = torch.arange(0, 4 * 5 * 6, dtype=torch.float32).view(4, 5, 6)
shifts, dims = shifts_dims_pair
func = partial(torch.roll, shifts=shifts, dims=dims)
wrapped_model = WrapFunction(func).eval()
with torch.no_grad():
torch.onnx.export(
wrapped_model,
input,
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input'],
output_names=['output'],
opset_version=opset)
onnx_model = onnx.load(onnx_file)
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [node.name for node in onnx_model.graph.initializer]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 1)
sess = rt.InferenceSession(onnx_file)
ort_output = sess.run(None, {'input': input.detach().numpy()})[0]
with torch.no_grad():
pytorch_output = wrapped_model(input.clone())
torch.testing.assert_allclose(ort_output, pytorch_output)
@pytest.mark.skipif(
not torch.cuda.is_available(),
reason='modulated_deform_conv2d only supports in GPU')
def test_modulated_deform_conv2d():
try:
from mmcv.ops import ModulatedDeformConv2d, get_onnxruntime_op_path
except (ImportError, ModuleNotFoundError):
pytest.skip('modulated_deform_conv op is not successfully compiled')
ort_custom_op_path = get_onnxruntime_op_path()
if not os.path.exists(ort_custom_op_path):
pytest.skip('custom ops for onnxruntime are not compiled.')
# modulated deform conv config
in_channels = 3
out_channels = 64
stride = 1
padding = 0
dilation = 1
groups = 1
deform_groups = 1
kernel_size = 3
input = torch.rand(1, in_channels, 28, 28).cuda() # (n, c, h, w)
conv_offset = nn.Conv2d(
in_channels=3,
out_channels=deform_groups * 3 * kernel_size * kernel_size,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=True).cuda()
conv_offset.cuda()
out = conv_offset(input)
o1, o2, mask = torch.chunk(out, 3, dim=1)
offset = torch.cat((o1, o2), dim=1)
mask = torch.sigmoid(mask)
model_with_bias = ModulatedDeformConv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
deform_groups,
bias=True)
model_without_bias = ModulatedDeformConv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
deform_groups,
bias=False)
models = [model_with_bias.cuda(), model_without_bias.cuda()]
for model in models:
# export and load onnx model
with torch.no_grad():
torch.onnx.export(
model, (input, offset, mask),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input', 'offset', 'mask'],
opset_version=11)
session_options = rt.SessionOptions()
if os.path.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
# compute onnx_output
sess = rt.InferenceSession(onnx_file, session_options)
onnx_output = sess.run(
None, {
'input': input.cpu().detach().numpy(),
'offset': offset.cpu().detach().numpy(),
'mask': mask.cpu().detach().numpy()
})[0]
# compute pytorch_output
with torch.no_grad():
pytorch_output = model(input, offset, mask).cpu()
# allclose
assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
def test_deform_conv2d(threshold=1e-3):
try:
from mmcv.ops import DeformConv2d, get_onnxruntime_op_path
except (ImportError, ModuleNotFoundError):
pytest.skip('deform_conv op is not successfully compiled')
ort_custom_op_path = get_onnxruntime_op_path()
if not os.path.exists(ort_custom_op_path):
pytest.skip('custom ops for onnxruntime are not compiled.')
# deform conv config
# modulated deform conv config
in_channels = 1
out_channels = 64
stride = 1
padding = 0
dilation = 1
groups = 1
deform_groups = 1
kernel_size = 2
input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
[[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
[[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
[[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]
x = torch.tensor(input)
conv_offset = nn.Conv2d(
in_channels=in_channels,
out_channels=deform_groups * 2 * kernel_size * kernel_size,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=True)
conv_offset.weight.data = torch.nn.Parameter(
torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
conv_offset.bias.data = torch.nn.Parameter(
torch.Tensor(offset_bias).reshape(8))
offset = conv_offset(x)
model = DeformConv2d(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, deform_groups)
model.weight.data = torch.nn.Parameter(
torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
with torch.no_grad():
torch.onnx.export(
model, (x, offset),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input', 'offset'],
opset_version=11)
session_options = rt.SessionOptions()
if os.path.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
# compute onnx_output
sess = rt.InferenceSession(onnx_file, session_options)
onnx_output = sess.run(
None, {
'input': x.cpu().detach().numpy(),
'offset': offset.cpu().detach().numpy(),
})[0]
# compute pytorch_output
with torch.no_grad():
pytorch_output = model(x, offset).cpu()
# allclose
assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
|