File size: 8,382 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch

from mmcv.utils import TORCH_VERSION, digit_version

try:
    # If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
    # would be imported and used; we should test if our modules support it.
    from torch.cuda.amp import autocast
except ImportError:
    pass

input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
                 [[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
                 [[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
                 [[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]

gt_out = [[[[1.650, 0.], [0.000, 0.]]]]
gt_x_grad = [[[[-0.666, 0.204, 0.000], [0.030, -0.416, 0.012],
               [0.000, 0.252, 0.129]]]]
gt_offset_weight_grad = [[[[1.44, 2.88], [0.00, 1.44]]],
                         [[[-0.72, -1.44], [0.00, -0.72]]],
                         [[[0.00, 0.00], [0.00, 0.00]]],
                         [[[0.00, 0.00], [0.00, 0.00]]],
                         [[[-0.10, -0.20], [0.00, -0.10]]],
                         [[[-0.08, -0.16], [0.00, -0.08]]],
                         [[[-0.54, -1.08], [0.00, -0.54]]],
                         [[[-0.54, -1.08], [0.00, -0.54]]]]
gt_offset_bias_grad = [1.44, -0.72, 0., 0., -0.10, -0.08, -0.54, -0.54],
gt_deform_weight_grad = [[[[3.62, 0.], [0.40, 0.18]]]]


class TestDeformconv:

    def _test_deformconv(self,
                         dtype=torch.float,
                         threshold=1e-3,
                         device='cuda',
                         batch_size=10,
                         im2col_step=2):
        if not torch.cuda.is_available() and device == 'cuda':
            pytest.skip('test requires GPU')
        from mmcv.ops import DeformConv2dPack
        c_in = 1
        c_out = 1
        batch_size = 10
        repeated_input = np.repeat(input, batch_size, axis=0)
        repeated_gt_out = np.repeat(gt_out, batch_size, axis=0)
        repeated_gt_x_grad = np.repeat(gt_x_grad, batch_size, axis=0)
        x = torch.tensor(repeated_input, device=device, dtype=dtype)
        x.requires_grad = True
        model = DeformConv2dPack(
            in_channels=c_in,
            out_channels=c_out,
            kernel_size=2,
            stride=1,
            padding=0,
            im2col_step=im2col_step)
        model.conv_offset.weight.data = torch.nn.Parameter(
            torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
        model.conv_offset.bias.data = torch.nn.Parameter(
            torch.Tensor(offset_bias).reshape(8))
        model.weight.data = torch.nn.Parameter(
            torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
        if device == 'cuda':
            model.cuda()
        model.type(dtype)

        out = model(x)
        out.backward(torch.ones_like(out))

        assert np.allclose(out.data.detach().cpu().numpy(), repeated_gt_out,
                           threshold)
        assert np.allclose(x.grad.detach().cpu().numpy(), repeated_gt_x_grad,
                           threshold)
        # the batch size of the input is increased which results in
        # a larger gradient so we need to divide by the batch_size
        assert np.allclose(
            model.conv_offset.weight.grad.detach().cpu().numpy() / batch_size,
            gt_offset_weight_grad, threshold)
        assert np.allclose(
            model.conv_offset.bias.grad.detach().cpu().numpy() / batch_size,
            gt_offset_bias_grad, threshold)
        assert np.allclose(
            model.weight.grad.detach().cpu().numpy() / batch_size,
            gt_deform_weight_grad, threshold)

        from mmcv.ops import DeformConv2d

        # test bias
        model = DeformConv2d(1, 1, 2, stride=1, padding=0)
        assert not hasattr(model, 'bias')
        # test bias=True
        with pytest.raises(AssertionError):
            model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
        # test in_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 2, 3, groups=2)
        # test out_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 4, 3, groups=3)

    def _test_amp_deformconv(self,
                             input_dtype,
                             threshold=1e-3,
                             batch_size=10,
                             im2col_step=2):
        """The function to test amp released on pytorch 1.6.0.

        The type of input data might be torch.float or torch.half,
        so we should test deform_conv in both cases. With amp, the
        data type of model will NOT be set manually.

        Args:
            input_dtype: torch.float or torch.half.
            threshold: the same as above function.
        """
        if not torch.cuda.is_available():
            return
        from mmcv.ops import DeformConv2dPack
        c_in = 1
        c_out = 1
        repeated_input = np.repeat(input, batch_size, axis=0)
        repeated_gt_out = np.repeat(gt_out, batch_size, axis=0)
        repeated_gt_x_grad = np.repeat(gt_x_grad, batch_size, axis=0)
        x = torch.Tensor(repeated_input).cuda().type(input_dtype)
        x.requires_grad = True
        model = DeformConv2dPack(
            in_channels=c_in,
            out_channels=c_out,
            kernel_size=2,
            stride=1,
            padding=0,
            im2col_step=im2col_step)
        model.conv_offset.weight.data = torch.nn.Parameter(
            torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
        model.conv_offset.bias.data = torch.nn.Parameter(
            torch.Tensor(offset_bias).reshape(8))
        model.weight.data = torch.nn.Parameter(
            torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
        model.cuda()

        out = model(x)
        out.backward(torch.ones_like(out))

        assert np.allclose(out.data.detach().cpu().numpy(), repeated_gt_out,
                           threshold)
        assert np.allclose(x.grad.detach().cpu().numpy(), repeated_gt_x_grad,
                           threshold)
        assert np.allclose(
            model.conv_offset.weight.grad.detach().cpu().numpy() / batch_size,
            gt_offset_weight_grad, threshold)
        assert np.allclose(
            model.conv_offset.bias.grad.detach().cpu().numpy() / batch_size,
            gt_offset_bias_grad, threshold)
        assert np.allclose(
            model.weight.grad.detach().cpu().numpy() / batch_size,
            gt_deform_weight_grad, threshold)

        from mmcv.ops import DeformConv2d

        # test bias
        model = DeformConv2d(1, 1, 2, stride=1, padding=0)
        assert not hasattr(model, 'bias')
        # test bias=True
        with pytest.raises(AssertionError):
            model = DeformConv2d(1, 1, 2, stride=1, padding=0, bias=True)
        # test in_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 2, 3, groups=2)
        # test out_channels % group != 0
        with pytest.raises(AssertionError):
            model = DeformConv2d(3, 4, 3, groups=3)

    def test_deformconv(self):
        self._test_deformconv(torch.double, device='cpu')
        self._test_deformconv(torch.float, device='cpu', threshold=1e-1)
        self._test_deformconv(torch.double)
        self._test_deformconv(torch.float)
        self._test_deformconv(torch.half, threshold=1e-1)
        # test batch_size < im2col_step
        self._test_deformconv(torch.float, batch_size=1, im2col_step=2)
        # test bach_size % im2col_step != 0
        with pytest.raises(
                AssertionError,
                match='batch size must be divisible by im2col_step'):
            self._test_deformconv(torch.float, batch_size=10, im2col_step=3)

        # test amp when torch version >= '1.6.0', the type of
        # input data for deformconv might be torch.float or torch.half
        if (TORCH_VERSION != 'parrots'
                and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
            with autocast(enabled=True):
                self._test_amp_deformconv(torch.float, 1e-1)
                self._test_amp_deformconv(torch.half, 1e-1)