File size: 4,543 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn

from .utils import weighted_loss


@weighted_loss
def smooth_l1_loss(pred, target, beta=1.0):
    """Smooth L1 loss.

    Args:
        pred (torch.Tensor): The prediction.
        target (torch.Tensor): The learning target of the prediction.
        beta (float, optional): The threshold in the piecewise function.
            Defaults to 1.0.
    Returns:
        torch.Tensor: Calculated loss
    """
    assert beta > 0
    assert pred.size() == target.size() and target.numel() > 0
    diff = torch.abs(pred - target)
    loss = torch.where(diff < beta, 0.5 * diff * diff / beta,
                       diff - 0.5 * beta)
    return loss


@weighted_loss
def l1_loss(pred, target):
    """L1 loss.

    Args:
        pred (torch.Tensor): The prediction.
        target (torch.Tensor): The learning target of the prediction.
    Returns:
        torch.Tensor: Calculated loss
    """
    assert pred.size() == target.size() and target.numel() > 0
    loss = torch.abs(pred - target)
    return loss


class SmoothL1Loss(nn.Module):
    """Smooth L1 loss.

    Args:
        beta (float, optional): The threshold in the piecewise function.
            Defaults to 1.0.
        reduction (str, optional): The method to reduce the loss.
            Options are "none", "mean" and "sum". Defaults to "mean".
        loss_weight (float, optional): The weight of loss.
    """
    def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0):
        super(SmoothL1Loss, self).__init__()
        self.beta = beta
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None,
                **kwargs):
        """Forward function.

        Args:
            pred (torch.Tensor): The prediction.
            target (torch.Tensor): The learning target of the prediction.
            weight (torch.Tensor, optional): The weight of loss for each
                prediction. Defaults to None.
            avg_factor (int, optional): Average factor that is used to average
                the loss. Defaults to None.
            reduction_override (str, optional): The reduction method used to
                override the original reduction method of the loss.
                Defaults to None.
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (reduction_override
                     if reduction_override else self.reduction)
        loss = self.loss_weight * smooth_l1_loss(pred,
                                                 target,
                                                 weight,
                                                 beta=self.beta,
                                                 reduction=reduction,
                                                 avg_factor=avg_factor,
                                                 **kwargs)
        return loss


class L1Loss(nn.Module):
    """L1 loss.

    Args:
        reduction (str, optional): The method to reduce the loss.
            Options are "none", "mean" and "sum".
        loss_weight (float, optional): The weight of loss.
    """
    def __init__(self, reduction='mean', loss_weight=1.0):
        super(L1Loss, self).__init__()
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None):
        """Forward function.

        Args:
            pred (torch.Tensor): The prediction.
            target (torch.Tensor): The learning target of the prediction.
            weight (torch.Tensor, optional): The weight of loss for each
                prediction. Defaults to None.
            avg_factor (int, optional): Average factor that is used to average
                the loss. Defaults to None.
            reduction_override (str, optional): The reduction method used to
                override the original reduction method of the loss.
                Defaults to None.
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (reduction_override
                     if reduction_override else self.reduction)
        loss = self.loss_weight * l1_loss(
            pred, target, weight, reduction=reduction, avg_factor=avg_factor)
        return loss