Spaces:
Sleeping
Sleeping
File size: 37,576 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
from abc import ABCMeta, abstractmethod
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
import detrsmpl.core.visualization.visualize_smpl as visualize_smpl
from detrsmpl.core.conventions.keypoints_mapping import get_keypoint_idx
from detrsmpl.models.utils import FitsDict
from detrsmpl.utils.geometry import (
batch_rodrigues,
estimate_translation,
project_points,
rotation_matrix_to_angle_axis,
)
from ..backbones.builder import build_backbone
from ..body_models.builder import build_body_model
from ..discriminators.builder import build_discriminator
from ..heads.builder import build_head
from ..losses.builder import build_loss
from ..necks.builder import build_neck
from ..registrants.builder import build_registrant
from .base_architecture import BaseArchitecture
def set_requires_grad(nets, requires_grad=False):
"""Set requies_grad for all the networks.
Args:
nets (nn.Module | list[nn.Module]): A list of networks or a single
network.
requires_grad (bool): Whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
class BodyModelEstimator(BaseArchitecture, metaclass=ABCMeta):
"""BodyModelEstimator Architecture.
Args:
backbone (dict | None, optional): Backbone config dict. Default: None.
neck (dict | None, optional): Neck config dict. Default: None
head (dict | None, optional): Regressor config dict. Default: None.
disc (dict | None, optional): Discriminator config dict.
Default: None.
registration (dict | None, optional): Registration config dict.
Default: None.
body_model_train (dict | None, optional): SMPL config dict during
training. Default: None.
body_model_test (dict | None, optional): SMPL config dict during
test. Default: None.
convention (str, optional): Keypoints convention. Default: "human_data"
loss_keypoints2d (dict | None, optional): Losses config dict for
2D keypoints. Default: None.
loss_keypoints3d (dict | None, optional): Losses config dict for
3D keypoints. Default: None.
loss_vertex (dict | None, optional): Losses config dict for mesh
vertices. Default: None
loss_smpl_pose (dict | None, optional): Losses config dict for smpl
pose. Default: None
loss_smpl_betas (dict | None, optional): Losses config dict for smpl
betas. Default: None
loss_camera (dict | None, optional): Losses config dict for predicted
camera parameters. Default: None
loss_adv (dict | None, optional): Losses config for adversial
training. Default: None.
loss_segm_mask (dict | None, optional): Losses config for predicted
part segmentation. Default: None.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
backbone: Optional[Union[dict, None]] = None,
neck: Optional[Union[dict, None]] = None,
head: Optional[Union[dict, None]] = None,
disc: Optional[Union[dict, None]] = None,
registration: Optional[Union[dict, None]] = None,
body_model_train: Optional[Union[dict, None]] = None,
body_model_test: Optional[Union[dict, None]] = None,
convention: Optional[str] = 'human_data',
loss_keypoints2d: Optional[Union[dict, None]] = None,
loss_keypoints3d: Optional[Union[dict, None]] = None,
loss_vertex: Optional[Union[dict, None]] = None,
loss_smpl_pose: Optional[Union[dict, None]] = None,
loss_smpl_betas: Optional[Union[dict, None]] = None,
loss_camera: Optional[Union[dict, None]] = None,
loss_adv: Optional[Union[dict, None]] = None,
loss_segm_mask: Optional[Union[dict, None]] = None,
init_cfg: Optional[Union[list, dict, None]] = None):
super(BodyModelEstimator, self).__init__(init_cfg)
self.backbone = build_backbone(backbone)
self.neck = build_neck(neck)
self.head = build_head(head)
self.disc = build_discriminator(disc)
self.body_model_train = build_body_model(body_model_train)
self.body_model_test = build_body_model(body_model_test)
self.convention = convention
# TODO: support HMR+
self.registration = registration
if registration is not None:
self.fits_dict = FitsDict(fits='static')
self.registration_mode = self.registration['mode']
self.registrant = build_registrant(registration['registrant'])
else:
self.registrant = None
self.loss_keypoints2d = build_loss(loss_keypoints2d)
self.loss_keypoints3d = build_loss(loss_keypoints3d)
self.loss_vertex = build_loss(loss_vertex)
self.loss_smpl_pose = build_loss(loss_smpl_pose)
self.loss_smpl_betas = build_loss(loss_smpl_betas)
self.loss_adv = build_loss(loss_adv)
self.loss_camera = build_loss(loss_camera)
self.loss_segm_mask = build_loss(loss_segm_mask)
set_requires_grad(self.body_model_train, False)
set_requires_grad(self.body_model_test, False)
def train_step(self, data_batch, optimizer, **kwargs):
"""Train step function.
In this function, the detector will finish the train step following
the pipeline:
1. get fake and real SMPL parameters
2. optimize discriminator (if have)
3. optimize generator
If `self.train_cfg.disc_step > 1`, the train step will contain multiple
iterations for optimizing discriminator with different input data and
only one iteration for optimizing generator after `disc_step`
iterations for discriminator.
Args:
data_batch (torch.Tensor): Batch of data as input.
optimizer (dict[torch.optim.Optimizer]): Dict with optimizers for
generator and discriminator (if have).
Returns:
outputs (dict): Dict with loss, information for logger,
the number of samples.
"""
if self.backbone is not None:
img = data_batch['img']
features = self.backbone(img)
else:
features = data_batch['features']
if self.neck is not None:
features = self.neck(features)
predictions = self.head(features)
targets = self.prepare_targets(data_batch)
# optimize discriminator (if have)
if self.disc is not None:
self.optimize_discrinimator(predictions, data_batch, optimizer)
if self.registration is not None:
targets = self.run_registration(predictions, targets)
losses = self.compute_losses(predictions, targets)
# optimizer generator part
if self.disc is not None:
adv_loss = self.optimize_generator(predictions)
losses.update(adv_loss)
loss, log_vars = self._parse_losses(losses)
for key in optimizer.keys():
optimizer[key].zero_grad()
loss.backward()
for key in optimizer.keys():
optimizer[key].step()
outputs = dict(loss=loss,
log_vars=log_vars,
num_samples=len(next(iter(data_batch.values()))))
return outputs
def run_registration(
self,
predictions: dict,
targets: dict,
threshold: Optional[float] = 10.0,
focal_length: Optional[float] = 5000.0,
img_res: Optional[Union[Tuple[int], int]] = 224) -> dict:
"""Run registration on 2D keypoinst in predictions to obtain SMPL
parameters as pseudo ground truth.
Args:
predictions (dict): predicted SMPL parameters are used for
initialization.
targets (dict): existing ground truths with 2D keypoints
threshold (float, optional): the threshold to update fits
dictionary. Default: 10.0.
focal_length (tuple(int) | int, optional): camera focal_length
img_res (int, optional): image resolution
Returns:
targets: contains additional SMPL parameters
"""
img_metas = targets['img_metas']
dataset_name = [meta['dataset_name'] for meta in img_metas
] # name of the dataset the image comes from
indices = targets['sample_idx'].squeeze()
is_flipped = targets['is_flipped'].squeeze().bool(
) # flag that indicates whether image was flipped
# during data augmentation
rot_angle = targets['rotation'].squeeze(
) # rotation angle used for data augmentation Q
gt_betas = targets['smpl_betas'].float()
gt_global_orient = targets['smpl_global_orient'].float()
gt_pose = targets['smpl_body_pose'].float().view(-1, 69)
pred_rotmat = predictions['pred_pose'].detach().clone()
pred_betas = predictions['pred_shape'].detach().clone()
pred_cam = predictions['pred_cam'].detach().clone()
pred_cam_t = torch.stack([
pred_cam[:, 1], pred_cam[:, 2], 2 * focal_length /
(img_res * pred_cam[:, 0] + 1e-9)
],
dim=-1)
gt_keypoints_2d = targets['keypoints2d'].float()
num_keypoints = gt_keypoints_2d.shape[1]
has_smpl = targets['has_smpl'].view(
-1).bool() # flag that indicates whether SMPL parameters are valid
batch_size = has_smpl.shape[0]
device = has_smpl.device
# Get GT vertices and model joints
# Note that gt_model_joints is different from gt_joints as
# it comes from SMPL
gt_out = self.body_model_train(betas=gt_betas,
body_pose=gt_pose,
global_orient=gt_global_orient)
# TODO: support more convention
assert num_keypoints == 49
gt_model_joints = gt_out['joints']
gt_vertices = gt_out['vertices']
# Get current best fits from the dictionary
opt_pose, opt_betas = self.fits_dict[(dataset_name, indices.cpu(),
rot_angle.cpu(),
is_flipped.cpu())]
opt_pose = opt_pose.to(device)
opt_betas = opt_betas.to(device)
opt_output = self.body_model_train(betas=opt_betas,
body_pose=opt_pose[:, 3:],
global_orient=opt_pose[:, :3])
opt_joints = opt_output['joints']
opt_vertices = opt_output['vertices']
gt_keypoints_2d_orig = gt_keypoints_2d.clone()
# Estimate camera translation given the model joints and 2D keypoints
# by minimizing a weighted least squares loss
gt_cam_t = estimate_translation(gt_model_joints,
gt_keypoints_2d_orig,
focal_length=focal_length,
img_size=img_res)
opt_cam_t = estimate_translation(opt_joints,
gt_keypoints_2d_orig,
focal_length=focal_length,
img_size=img_res)
with torch.no_grad():
loss_dict = self.registrant.evaluate(
global_orient=opt_pose[:, :3],
body_pose=opt_pose[:, 3:],
betas=opt_betas,
transl=opt_cam_t,
keypoints2d=gt_keypoints_2d_orig[:, :, :2],
keypoints2d_conf=gt_keypoints_2d_orig[:, :, 2],
reduction_override='none')
opt_joint_loss = loss_dict['keypoint2d_loss'].sum(dim=-1).sum(dim=-1)
if self.registration_mode == 'in_the_loop':
# Convert predicted rotation matrices to axis-angle
pred_rotmat_hom = torch.cat([
pred_rotmat.detach().view(-1, 3, 3).detach(),
torch.tensor([0, 0, 1], dtype=torch.float32,
device=device).view(1, 3, 1).expand(
batch_size * 24, -1, -1)
],
dim=-1)
pred_pose = rotation_matrix_to_angle_axis(
pred_rotmat_hom).contiguous().view(batch_size, -1)
# tgm.rotation_matrix_to_angle_axis returns NaN for 0 rotation,
# so manually hack it
pred_pose[torch.isnan(pred_pose)] = 0.0
registrant_output = self.registrant(
keypoints2d=gt_keypoints_2d_orig[:, :, :2],
keypoints2d_conf=gt_keypoints_2d_orig[:, :, 2],
init_global_orient=pred_pose[:, :3],
init_transl=pred_cam_t,
init_body_pose=pred_pose[:, 3:],
init_betas=pred_betas,
return_joints=True,
return_verts=True,
return_losses=True)
new_opt_vertices = registrant_output[
'vertices'] - pred_cam_t.unsqueeze(1)
new_opt_joints = registrant_output[
'joints'] - pred_cam_t.unsqueeze(1)
new_opt_global_orient = registrant_output['global_orient']
new_opt_body_pose = registrant_output['body_pose']
new_opt_pose = torch.cat(
[new_opt_global_orient, new_opt_body_pose], dim=1)
new_opt_betas = registrant_output['betas']
new_opt_cam_t = registrant_output['transl']
new_opt_joint_loss = registrant_output['keypoint2d_loss'].sum(
dim=-1).sum(dim=-1)
# Will update the dictionary for the examples where the new loss
# is less than the current one
update = (new_opt_joint_loss < opt_joint_loss)
opt_joint_loss[update] = new_opt_joint_loss[update]
opt_vertices[update, :] = new_opt_vertices[update, :]
opt_joints[update, :] = new_opt_joints[update, :]
opt_pose[update, :] = new_opt_pose[update, :]
opt_betas[update, :] = new_opt_betas[update, :]
opt_cam_t[update, :] = new_opt_cam_t[update, :]
self.fits_dict[(dataset_name, indices.cpu(), rot_angle.cpu(),
is_flipped.cpu(),
update.cpu())] = (opt_pose.cpu(), opt_betas.cpu())
# Replace extreme betas with zero betas
opt_betas[(opt_betas.abs() > 3).any(dim=-1)] = 0.
# Replace the optimized parameters with the ground truth parameters,
# if available
opt_vertices[has_smpl, :, :] = gt_vertices[has_smpl, :, :]
opt_cam_t[has_smpl, :] = gt_cam_t[has_smpl, :]
opt_joints[has_smpl, :, :] = gt_model_joints[has_smpl, :, :]
opt_pose[has_smpl, 3:] = gt_pose[has_smpl, :]
opt_pose[has_smpl, :3] = gt_global_orient[has_smpl, :]
opt_betas[has_smpl, :] = gt_betas[has_smpl, :]
# Assert whether a fit is valid by comparing the joint loss with
# the threshold
valid_fit = (opt_joint_loss < threshold).to(device)
valid_fit = valid_fit | has_smpl
targets['valid_fit'] = valid_fit
targets['opt_vertices'] = opt_vertices
targets['opt_cam_t'] = opt_cam_t
targets['opt_joints'] = opt_joints
targets['opt_pose'] = opt_pose
targets['opt_betas'] = opt_betas
return targets
def optimize_discrinimator(self, predictions: dict, data_batch: dict,
optimizer: dict):
"""Optimize discrinimator during adversarial training."""
set_requires_grad(self.disc, True)
fake_data = self.make_fake_data(predictions, requires_grad=False)
real_data = self.make_real_data(data_batch)
fake_score = self.disc(fake_data)
real_score = self.disc(real_data)
disc_losses = {}
disc_losses['real_loss'] = self.loss_adv(real_score,
target_is_real=True,
is_disc=True)
disc_losses['fake_loss'] = self.loss_adv(fake_score,
target_is_real=False,
is_disc=True)
loss_disc, log_vars_d = self._parse_losses(disc_losses)
optimizer['disc'].zero_grad()
loss_disc.backward()
optimizer['disc'].step()
def optimize_generator(self, predictions: dict):
"""Optimize generator during adversarial training."""
set_requires_grad(self.disc, False)
fake_data = self.make_fake_data(predictions, requires_grad=True)
pred_score = self.disc(fake_data)
loss_adv = self.loss_adv(pred_score,
target_is_real=True,
is_disc=False)
loss = dict(adv_loss=loss_adv)
return loss
def compute_keypoints3d_loss(
self,
pred_keypoints3d: torch.Tensor,
gt_keypoints3d: torch.Tensor,
has_keypoints3d: Optional[torch.Tensor] = None):
"""Compute loss for 3d keypoints."""
keypoints3d_conf = gt_keypoints3d[:, :, 3].float().unsqueeze(-1)
keypoints3d_conf = keypoints3d_conf.repeat(1, 1, 3)
pred_keypoints3d = pred_keypoints3d.float()
gt_keypoints3d = gt_keypoints3d[:, :, :3].float()
# currently, only mpi_inf_3dhp and h36m have 3d keypoints
# both datasets have right_hip_extra and left_hip_extra
right_hip_idx = get_keypoint_idx('right_hip_extra', self.convention)
left_hip_idx = get_keypoint_idx('left_hip_extra', self.convention)
gt_pelvis = (gt_keypoints3d[:, right_hip_idx, :] +
gt_keypoints3d[:, left_hip_idx, :]) / 2
pred_pelvis = (pred_keypoints3d[:, right_hip_idx, :] +
pred_keypoints3d[:, left_hip_idx, :]) / 2
gt_keypoints3d = gt_keypoints3d - gt_pelvis[:, None, :]
pred_keypoints3d = pred_keypoints3d - pred_pelvis[:, None, :]
loss = self.loss_keypoints3d(pred_keypoints3d,
gt_keypoints3d,
reduction_override='none')
# If has_keypoints3d is not None, then computes the losses on the
# instances that have ground-truth keypoints3d.
# But the zero confidence keypoints will be included in mean.
# Otherwise, only compute the keypoints3d
# which have positive confidence.
# has_keypoints3d is None when the key has_keypoints3d
# is not in the datasets
if has_keypoints3d is None:
valid_pos = keypoints3d_conf > 0
if keypoints3d_conf[valid_pos].numel() == 0:
return torch.Tensor([0]).type_as(gt_keypoints3d)
loss = torch.sum(loss * keypoints3d_conf)
loss /= keypoints3d_conf[valid_pos].numel()
else:
keypoints3d_conf = keypoints3d_conf[has_keypoints3d == 1]
if keypoints3d_conf.shape[0] == 0:
return torch.Tensor([0]).type_as(gt_keypoints3d)
loss = loss[has_keypoints3d == 1]
loss = (loss * keypoints3d_conf).mean()
return loss
def compute_keypoints2d_loss(
self,
pred_keypoints3d: torch.Tensor,
pred_cam: torch.Tensor,
gt_keypoints2d: torch.Tensor,
img_res: Optional[int] = 224,
focal_length: Optional[int] = 5000,
has_keypoints2d: Optional[torch.Tensor] = None):
"""Compute loss for 2d keypoints."""
keypoints2d_conf = gt_keypoints2d[:, :, 2].float().unsqueeze(-1)
keypoints2d_conf = keypoints2d_conf.repeat(1, 1, 2)
gt_keypoints2d = gt_keypoints2d[:, :, :2].float()
pred_keypoints2d = project_points(pred_keypoints3d,
pred_cam,
focal_length=focal_length,
img_res=img_res)
# Normalize keypoints to [-1,1]
# The coordinate origin of pred_keypoints_2d is
# the center of the input image.
pred_keypoints2d = 2 * pred_keypoints2d / (img_res - 1)
# The coordinate origin of gt_keypoints_2d is
# the top left corner of the input image.
gt_keypoints2d = 2 * gt_keypoints2d / (img_res - 1) - 1
loss = self.loss_keypoints2d(pred_keypoints2d,
gt_keypoints2d,
reduction_override='none')
# If has_keypoints2d is not None, then computes the losses on the
# instances that have ground-truth keypoints2d.
# But the zero confidence keypoints will be included in mean.
# Otherwise, only compute the keypoints2d
# which have positive confidence.
# has_keypoints2d is None when the key has_keypoints2d
# is not in the datasets
if has_keypoints2d is None:
valid_pos = keypoints2d_conf > 0
if keypoints2d_conf[valid_pos].numel() == 0:
return torch.Tensor([0]).type_as(gt_keypoints2d)
loss = torch.sum(loss * keypoints2d_conf)
loss /= keypoints2d_conf[valid_pos].numel()
else:
keypoints2d_conf = keypoints2d_conf[has_keypoints2d == 1]
if keypoints2d_conf.shape[0] == 0:
return torch.Tensor([0]).type_as(gt_keypoints2d)
loss = loss[has_keypoints2d == 1]
loss = (loss * keypoints2d_conf).mean()
return loss
def compute_vertex_loss(self, pred_vertices: torch.Tensor,
gt_vertices: torch.Tensor, has_smpl: torch.Tensor):
"""Compute loss for vertices."""
gt_vertices = gt_vertices.float()
conf = has_smpl.float().view(-1, 1, 1)
conf = conf.repeat(1, gt_vertices.shape[1], gt_vertices.shape[2])
loss = self.loss_vertex(pred_vertices,
gt_vertices,
reduction_override='none')
valid_pos = conf > 0
if conf[valid_pos].numel() == 0:
return torch.Tensor([0]).type_as(gt_vertices)
loss = torch.sum(loss * conf) / conf[valid_pos].numel()
return loss
def compute_smpl_pose_loss(self, pred_rotmat: torch.Tensor,
gt_pose: torch.Tensor, has_smpl: torch.Tensor):
"""Compute loss for smpl pose."""
conf = has_smpl.float().view(-1)
valid_pos = conf > 0
if conf[valid_pos].numel() == 0:
return torch.Tensor([0]).type_as(gt_pose)
pred_rotmat = pred_rotmat[valid_pos]
gt_pose = gt_pose[valid_pos]
conf = conf[valid_pos]
gt_rotmat = batch_rodrigues(gt_pose.view(-1, 3)).view(-1, 24, 3, 3)
loss = self.loss_smpl_pose(pred_rotmat,
gt_rotmat,
reduction_override='none')
loss = loss.view(loss.shape[0], -1).mean(-1)
loss = torch.mean(loss * conf)
return loss
def compute_smpl_betas_loss(self, pred_betas: torch.Tensor,
gt_betas: torch.Tensor,
has_smpl: torch.Tensor):
"""Compute loss for smpl betas."""
conf = has_smpl.float().view(-1)
valid_pos = conf > 0
if conf[valid_pos].numel() == 0:
return torch.Tensor([0]).type_as(gt_betas)
pred_betas = pred_betas[valid_pos]
gt_betas = gt_betas[valid_pos]
conf = conf[valid_pos]
loss = self.loss_smpl_betas(pred_betas,
gt_betas,
reduction_override='none')
loss = loss.view(loss.shape[0], -1).mean(-1)
loss = torch.mean(loss * conf)
return loss
def compute_camera_loss(self, cameras: torch.Tensor):
"""Compute loss for predicted camera parameters."""
loss = self.loss_camera(cameras)
return loss
def compute_part_segmentation_loss(self,
pred_heatmap: torch.Tensor,
gt_vertices: torch.Tensor,
gt_keypoints2d: torch.Tensor,
gt_model_joints: torch.Tensor,
has_smpl: torch.Tensor,
img_res: Optional[int] = 224,
focal_length: Optional[int] = 500):
"""Compute loss for part segmentations."""
device = gt_keypoints2d.device
gt_keypoints2d_valid = gt_keypoints2d[has_smpl == 1]
batch_size = gt_keypoints2d_valid.shape[0]
gt_vertices_valid = gt_vertices[has_smpl == 1]
gt_model_joints_valid = gt_model_joints[has_smpl == 1]
if batch_size == 0:
return torch.Tensor([0]).type_as(gt_keypoints2d)
gt_cam_t = estimate_translation(
gt_model_joints_valid,
gt_keypoints2d_valid,
focal_length=focal_length,
img_size=img_res,
)
K = torch.eye(3)
K[0, 0] = focal_length
K[1, 1] = focal_length
K[2, 2] = 1
K[0, 2] = img_res / 2.
K[1, 2] = img_res / 2.
K = K[None, :, :]
R = torch.eye(3)[None, :, :]
device = gt_keypoints2d.device
gt_sem_mask = visualize_smpl.render_smpl(
verts=gt_vertices_valid,
R=R,
K=K,
T=gt_cam_t,
render_choice='part_silhouette',
resolution=img_res,
return_tensor=True,
body_model=self.body_model_train,
device=device,
in_ndc=False,
convention='pytorch3d',
projection='perspective',
no_grad=True,
batch_size=batch_size,
verbose=False,
)
gt_sem_mask = torch.flip(gt_sem_mask, [1, 2]).squeeze(-1).detach()
pred_heatmap_valid = pred_heatmap[has_smpl == 1]
ph, pw = pred_heatmap_valid.size(2), pred_heatmap_valid.size(3)
h, w = gt_sem_mask.size(1), gt_sem_mask.size(2)
if ph != h or pw != w:
pred_heatmap_valid = F.interpolate(input=pred_heatmap_valid,
size=(h, w),
mode='bilinear')
loss = self.loss_segm_mask(pred_heatmap_valid, gt_sem_mask)
return loss
def compute_losses(self, predictions: dict, targets: dict):
"""Compute losses."""
pred_betas = predictions['pred_shape'].view(-1, 10)
pred_pose = predictions['pred_pose'].view(-1, 24, 3, 3)
pred_cam = predictions['pred_cam'].view(-1, 3)
gt_keypoints3d = targets['keypoints3d']
gt_keypoints2d = targets['keypoints2d']
# pred_pose N, 24, 3, 3
if self.body_model_train is not None:
pred_output = self.body_model_train(
betas=pred_betas,
body_pose=pred_pose[:, 1:],
global_orient=pred_pose[:, 0].unsqueeze(1),
pose2rot=False,
num_joints=gt_keypoints2d.shape[1])
pred_keypoints3d = pred_output['joints']
pred_vertices = pred_output['vertices']
# # TODO: temp. Should we multiply confs here?
# pred_keypoints3d_mask = pred_output['joint_mask']
# keypoints3d_mask = keypoints3d_mask * pred_keypoints3d_mask
# TODO: temp solution
if 'valid_fit' in targets:
has_smpl = targets['valid_fit'].view(-1)
# global_orient = targets['opt_pose'][:, :3].view(-1, 1, 3)
gt_pose = targets['opt_pose']
gt_betas = targets['opt_betas']
gt_vertices = targets['opt_vertices']
else:
has_smpl = targets['has_smpl'].view(-1)
gt_pose = targets['smpl_body_pose']
global_orient = targets['smpl_global_orient'].view(-1, 1, 3)
gt_pose = torch.cat((global_orient, gt_pose), dim=1).float()
gt_betas = targets['smpl_betas'].float()
# gt_pose N, 72
if self.body_model_train is not None:
gt_output = self.body_model_train(
betas=gt_betas,
body_pose=gt_pose[:, 3:],
global_orient=gt_pose[:, :3],
num_joints=gt_keypoints2d.shape[1])
gt_vertices = gt_output['vertices']
gt_model_joints = gt_output['joints']
if 'has_keypoints3d' in targets:
has_keypoints3d = targets['has_keypoints3d'].squeeze(-1)
else:
has_keypoints3d = None
if 'has_keypoints2d' in targets:
has_keypoints2d = targets['has_keypoints2d'].squeeze(-1)
else:
has_keypoints2d = None
if 'pred_segm_mask' in predictions:
pred_segm_mask = predictions['pred_segm_mask']
losses = {}
if self.loss_keypoints3d is not None:
losses['keypoints3d_loss'] = self.compute_keypoints3d_loss(
pred_keypoints3d,
gt_keypoints3d,
has_keypoints3d=has_keypoints3d)
if self.loss_keypoints2d is not None:
losses['keypoints2d_loss'] = self.compute_keypoints2d_loss(
pred_keypoints3d,
pred_cam,
gt_keypoints2d,
has_keypoints2d=has_keypoints2d)
if self.loss_vertex is not None:
losses['vertex_loss'] = self.compute_vertex_loss(
pred_vertices, gt_vertices, has_smpl)
if self.loss_smpl_pose is not None:
losses['smpl_pose_loss'] = self.compute_smpl_pose_loss(
pred_pose, gt_pose, has_smpl)
if self.loss_smpl_betas is not None:
losses['smpl_betas_loss'] = self.compute_smpl_betas_loss(
pred_betas, gt_betas, has_smpl)
if self.loss_camera is not None:
losses['camera_loss'] = self.compute_camera_loss(pred_cam)
if self.loss_segm_mask is not None:
losses['loss_segm_mask'] = self.compute_part_segmentation_loss(
pred_segm_mask, gt_vertices, gt_keypoints2d, gt_model_joints,
has_smpl)
return losses
@abstractmethod
def make_fake_data(self, predictions, requires_grad):
pass
@abstractmethod
def make_real_data(self, data_batch):
pass
@abstractmethod
def prepare_targets(self, data_batch):
pass
def forward_train(self, **kwargs):
"""Forward function for general training.
For mesh estimation, we do not use this interface.
"""
raise NotImplementedError('This interface should not be used in '
'current training schedule. Please use '
'`train_step` for training.')
@abstractmethod
def forward_test(self, img, img_metas, **kwargs):
"""Defines the computation performed at every call when testing."""
pass
class ImageBodyModelEstimator(BodyModelEstimator):
def make_fake_data(self, predictions: dict, requires_grad: bool):
pred_cam = predictions['pred_cam']
pred_pose = predictions['pred_pose']
pred_betas = predictions['pred_shape']
if requires_grad:
fake_data = (pred_cam, pred_pose, pred_betas)
else:
fake_data = (pred_cam.detach(), pred_pose.detach(),
pred_betas.detach())
return fake_data
def make_real_data(self, data_batch: dict):
transl = data_batch['adv_smpl_transl'].float()
global_orient = data_batch['adv_smpl_global_orient']
body_pose = data_batch['adv_smpl_body_pose']
betas = data_batch['adv_smpl_betas'].float()
pose = torch.cat((global_orient, body_pose), dim=-1).float()
real_data = (transl, pose, betas)
return real_data
def prepare_targets(self, data_batch: dict):
# Image Mesh Estimator does not need extra process for ground truth
return data_batch
def forward_test(self, img: torch.Tensor, img_metas: dict, **kwargs):
"""Defines the computation performed at every call when testing."""
if self.backbone is not None:
features = self.backbone(img)
else:
features = kwargs['features']
if self.neck is not None:
features = self.neck(features)
predictions = self.head(features)
pred_pose = predictions['pred_pose']
pred_betas = predictions['pred_shape']
pred_cam = predictions['pred_cam']
pred_output = self.body_model_test(
betas=pred_betas,
body_pose=pred_pose[:, 1:],
global_orient=pred_pose[:, 0].unsqueeze(1),
pose2rot=False)
pred_vertices = pred_output['vertices']
pred_keypoints_3d = pred_output['joints']
all_preds = {}
all_preds['keypoints_3d'] = pred_keypoints_3d.detach().cpu().numpy()
all_preds['smpl_pose'] = pred_pose.detach().cpu().numpy()
all_preds['smpl_beta'] = pred_betas.detach().cpu().numpy()
all_preds['camera'] = pred_cam.detach().cpu().numpy()
all_preds['vertices'] = pred_vertices.detach().cpu().numpy()
image_path = []
for img_meta in img_metas:
image_path.append(img_meta['image_path'])
all_preds['image_path'] = image_path
all_preds['image_idx'] = kwargs['sample_idx']
return all_preds
class VideoBodyModelEstimator(BodyModelEstimator):
def make_fake_data(self, predictions: dict, requires_grad: bool):
B, T = predictions['pred_cam'].shape[:2]
pred_cam_vec = predictions['pred_cam']
pred_betas_vec = predictions['pred_shape']
pred_pose = predictions['pred_pose']
pred_pose_vec = rotation_matrix_to_angle_axis(pred_pose.view(-1, 3, 3))
pred_pose_vec = pred_pose_vec.contiguous().view(B, T, -1)
pred_theta_vec = (pred_cam_vec, pred_pose_vec, pred_betas_vec)
pred_theta_vec = torch.cat(pred_theta_vec, dim=-1)
if not requires_grad:
pred_theta_vec = pred_theta_vec.detach()
return pred_theta_vec[:, :, 6:75]
def make_real_data(self, data_batch: dict):
B, T = data_batch['adv_smpl_transl'].shape[:2]
transl = data_batch['adv_smpl_transl'].view(B, T, -1)
global_orient = \
data_batch['adv_smpl_global_orient'].view(B, T, -1)
body_pose = data_batch['adv_smpl_body_pose'].view(B, T, -1)
betas = data_batch['adv_smpl_betas'].view(B, T, -1)
real_data = (transl, global_orient, body_pose, betas)
real_data = torch.cat(real_data, dim=-1).float()
return real_data[:, :, 6:75]
def prepare_targets(self, data_batch: dict):
# Video Mesh Estimator needs squeeze first two dimensions
B, T = data_batch['smpl_body_pose'].shape[:2]
output = {
'smpl_body_pose': data_batch['smpl_body_pose'].view(-1, 23, 3),
'smpl_global_orient': data_batch['smpl_global_orient'].view(-1, 3),
'smpl_betas': data_batch['smpl_betas'].view(-1, 10),
'has_smpl': data_batch['has_smpl'].view(-1),
'keypoints3d': data_batch['keypoints3d'].view(B * T, -1, 4),
'keypoints2d': data_batch['keypoints2d'].view(B * T, -1, 3)
}
return output
def forward_test(self, img_metas: dict, **kwargs):
"""Defines the computation performed at every call when testing."""
if self.backbone is not None:
features = self.backbone(kwargs['img'])
else:
features = kwargs['features']
if self.neck is not None:
features = self.neck(features)
B, T = features.shape[:2]
predictions = self.head(features)
pred_pose = predictions['pred_pose'].view(-1, 24, 3, 3)
pred_betas = predictions['pred_shape'].view(-1, 10)
pred_cam = predictions['pred_cam'].view(-1, 3)
pred_output = self.body_model_test(
betas=pred_betas,
body_pose=pred_pose[:, 1:],
global_orient=pred_pose[:, 0].unsqueeze(1),
pose2rot=False)
pred_vertices = pred_output['vertices']
pred_keypoints_3d = pred_output['joints']
all_preds = {}
all_preds['keypoints_3d'] = pred_keypoints_3d.detach().cpu().numpy()
all_preds['smpl_pose'] = pred_pose.detach().cpu().numpy()
all_preds['smpl_beta'] = pred_betas.detach().cpu().numpy()
all_preds['camera'] = pred_cam.detach().cpu().numpy()
all_preds['vertices'] = pred_vertices.detach().cpu().numpy()
all_preds['image_idx'] = \
kwargs['sample_idx'].detach().cpu().numpy().reshape((-1))
return all_preds
|