Spaces:
Sleeping
Sleeping
File size: 32,870 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta
from typing import Optional, Union
import torch
from scipy.optimize import linear_sum_assignment
import numpy as np
from detrsmpl.core.post_processing.bbox.assigners import build_assigner
from detrsmpl.core.post_processing.bbox.samplers import build_sampler
from detrsmpl.core.conventions.keypoints_mapping import (get_keypoint_idx,
convert_kps)
from detrsmpl.utils.geometry import batch_rodrigues
from detrsmpl.utils.geometry import project_points
from detrsmpl.utils.misc import multi_apply
from ..backbones.builder import build_backbone
from ..body_models.builder import build_body_model
from ..heads.builder import build_head
from ..losses.builder import build_loss
from ..necks.builder import build_neck
from .base_architecture import BaseArchitecture
# from mmdet.core import bbox2result
class DETRLoss(BaseArchitecture, metaclass=ABCMeta):
def __init__(
self,
body_model_train: Optional[Union[dict, None]] = None,
body_model_test: Optional[Union[dict, None]] = None,
convention: Optional[str] = 'human_data',
loss_keypoints2d: Optional[Union[dict, None]] = None,
loss_keypoints3d: Optional[Union[dict, None]] = None,
loss_vertex: Optional[Union[dict, None]] = None,
loss_smpl_pose: Optional[Union[dict, None]] = None,
loss_smpl_betas: Optional[Union[dict, None]] = None,
loss_camera: Optional[Union[dict, None]] = None,
loss_cls: Optional[Union[dict,
None]] = dict(type='CrossEntropyLoss',
bg_cls_weight=0.1,
use_sigmoid=False,
loss_weight=1.0,
class_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
loss_iou=dict(type='GIoULoss', loss_weight=2.0),
init_cfg: Optional[Union[list, dict, None]] = None,
train_cfg:
Optional[Union[dict, None]] = dict(assigner=dict(
type='HungarianAssigner',
kp3d_cost=dict(
type='Keypoints3DCost', convention='smpl_54', weight=5.0),
kp2d_cost=dict(
type='Keypoints2DCost', convention='smpl_54', weight=5.0),
# cls_cost=dict(type='ClassificationCost', weight=1.),
# reg_cost=dict(type='BBoxL1Cost', weight=5.0),
# iou_cost=dict(
# type='IoUCost', iou_mode='giou', weight=2.0))
)),
test_cfg: Optional[Union[dict, None]] = None):
super(DETRLoss, self).__init__(init_cfg)
if train_cfg:
assert 'assigner' in train_cfg, 'assigner should be provided '\
'when train_cfg is set.'
assigner = train_cfg['assigner']
# TODO: update these
# assert loss_cls['loss_weight'] == assigner['kp3d_cost']['weight'], \
# 'The classification weight for loss and matcher should be' \
# 'exactly the same.'
# assert loss_bbox['loss_weight'] == assigner['kp3d_cost'][
# 'weight'], 'The regression L1 weight for loss and matcher ' \
# 'should be exactly the same.'
# assert loss_iou['loss_weight'] == assigner['kp3d_cost']['weight'], \
# 'The regression iou weight for loss and matcher should be' \
# 'exactly the same.'
self.assigner = build_assigner(assigner)
# DETR sampling=False, so use PseudoSampler
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
# build loss
self.loss_keypoints2d = build_loss(loss_keypoints2d)
self.loss_keypoints3d = build_loss(loss_keypoints3d)
self.loss_vertex = build_loss(loss_vertex)
self.loss_smpl_pose = build_loss(loss_smpl_pose)
self.loss_smpl_betas = build_loss(loss_smpl_betas)
self.loss_cls = build_loss(loss_cls)
self.loss_bbox = build_loss(loss_bbox)
self.loss_iou = build_loss(loss_iou)
self.body_model_train = build_body_model(body_model_train)
self.body_model_test = build_body_model(body_model_test)
self.convention = convention
def forward_train(self, preds, targets):
pass
def forward(self, preds, targets):
"""
Args:
img (Tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
img_metas (list[dict]): A List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
:class:`mmdet.datasets.pipelines.Collect`.
gt_bboxes (list[Tensor]): Each item are the truth boxes for each
image in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): Class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]): Specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
# super(SingleStageDetector, self).forward_train(img, img_metas)
# NOTE the batched image size information may be useful, e.g.
# in DETR, this is needed for the construction of masks, which is
# then used for the transformer_head.
pred_pose = preds['pred_pose']
pred_betas = preds['pred_betas']
pred_cameras = preds['pred_cameras']
has_smpl = targets['has_smpl']
gt_smpl_body_pose = targets[
'smpl_body_pose'] # [bs_0: [ins_num, 23, 3]]
gt_smpl_global_orient = targets['smpl_global_orient']
gt_smpl_body_pose = \
[torch.cat((gt_smpl_global_orient[i].view(-1, 1, 3),
gt_smpl_body_pose[i]), dim=1).float()
for i in range(len(gt_smpl_body_pose))]
gt_smpl_betas = targets['smpl_betas']
gt_smpl_transl = targets['smpl_transl']
gt_keypoints2d = targets['keypoints2d']
gt_keypoints3d = targets['keypoints3d'] # [bs_0: [N. K, D], ...]
img_metas = targets['img_metas']
if 'has_keypoints3d' in targets:
has_keypoints3d = targets['has_keypoints3d']
else:
has_keypoints3d = None
if 'has_keypoints2d' in targets:
has_keypoints2d = targets['has_keypoints2d']
else:
has_keypoints2d = None
img = targets['img']
batch_input_shape = tuple(img[0].size()[-2:])
for img_meta in img_metas:
img_meta['batch_input_shape'] = batch_input_shape
L, B, N = pred_pose.shape[:3]
if self.body_model_train is not None:
pred_output = self.body_model_train(
betas=pred_betas.reshape(L * B * N, 10),
body_pose=pred_pose.reshape(L * B * N, 24, 3, 3)[:, 1:],
global_orient=pred_pose.reshape(L * B * N, 24, 3,
3)[:, 0].unsqueeze(1),
pose2rot=False,
num_joints=gt_keypoints2d[0].shape[1])
pred_keypoints3d = pred_output['joints'].reshape(L, B, N, -1, 3)
pred_vertices = pred_output['vertices'].reshape(L, B, N, 6890, 3)
# loss
num_dec_layers = pred_pose.shape[0]
all_gt_smpl_body_pose_list = [
gt_smpl_body_pose for _ in range(num_dec_layers)
]
all_gt_smpl_global_orient_list = [
gt_smpl_global_orient for _ in range(num_dec_layers)
]
all_gt_smpl_betas_list = [gt_smpl_betas for _ in range(num_dec_layers)]
all_gt_smpl_transl_list = [
gt_smpl_transl for _ in range(num_dec_layers)
]
all_gt_keypoints2d_list = [
gt_keypoints2d for _ in range(num_dec_layers)
]
all_gt_keypoints3d_list = [
gt_keypoints3d for _ in range(num_dec_layers)
]
all_has_smpl_list = [has_smpl for _ in range(num_dec_layers)]
all_has_keypoints3d_list = [
has_keypoints3d for _ in range(num_dec_layers)
]
all_has_keypoints2d_list = [
has_keypoints2d for _ in range(num_dec_layers)
]
all_gt_ignore_list = [None for _ in range(num_dec_layers)]
img_metas_list = [img_metas for _ in range(num_dec_layers)]
# all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)]
# all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)]
# all_gt_bboxes_ignore_list = [
# gt_bboxes_ignore for _ in range(num_dec_layers)
# ]
# computer loss for each layer
(kp2d_loss, kp3d_loss, vert_loss, pose_loss, beta_loss) = multi_apply(
self.compute_losses, pred_pose, pred_betas, pred_keypoints3d,
pred_vertices, pred_cameras, all_gt_smpl_body_pose_list,
all_gt_smpl_betas_list, all_gt_keypoints2d_list,
all_gt_keypoints3d_list, all_has_keypoints2d_list,
all_has_keypoints3d_list, all_has_smpl_list, img_metas_list,
all_gt_ignore_list)
losses = {}
losses['keypoints2d_loss'] = kp2d_loss[-1]
losses['keypoints3d_loss'] = kp3d_loss[-1]
losses['vertex_loss'] = vert_loss[-1]
losses['smpl_pose_loss'] = pose_loss[-1]
losses['smpl_betas_loss'] = beta_loss[-1]
# loss from other decoder layers
num_dec_layer = 0
for (kp2d_loss_i, kp3d_loss_i, vert_loss_i, pose_loss_i,
beta_loss_i) in zip(kp2d_loss[:-1], kp3d_loss[:-1],
vert_loss[:-1], pose_loss[:-1],
beta_loss[:-1]):
losses[f'd{num_dec_layer}.keypoints2d_loss'] = kp2d_loss_i
losses[f'd{num_dec_layer}.keypoints3d_loss'] = kp3d_loss_i
losses[f'd{num_dec_layer}.vertex_loss'] = vert_loss_i
losses[f'd{num_dec_layer}.smpl_pose_loss'] = pose_loss_i
losses[f'd{num_dec_layer}.smpl_betas_loss'] = beta_loss_i
num_dec_layer += 1
return losses
def compute_losses(self,
outputs_poses,
outputs_shapes,
outputs_kp3ds,
outputs_verts,
outputs_cameras,
all_gt_smpl_body_pose_list,
all_gt_smpl_betas_list,
all_gt_kp2d_list,
all_gt_kp3d_list,
all_has_keypoints2d_list,
all_has_keypoints3d_list,
all_has_smpl_list,
img_metas_list,
all_gt_ignore_list=None):
"""_summary_
loss_single
get_targets
Args:
outputs_poses (_type_): with shape [B, N, 24, 3, 3]
outputs_shapes (_type_): _description_
all_gt_smpl_body_pose_list (_type_): _description_
all_gt_smpl_betas_list (_type_): _description_
all_gt_kp2d_list (Torch.tensor):
all_gt_kp3d_list (list): with shape [B, N, K, D]
img_metas_list (_type_): _description_
all_gt_ignore_list (_type_): _description_
"""
num_img = outputs_poses.size(0) # batch_size
all_pred_smpl_pose_list = [outputs_poses[i] for i in range(num_img)]
all_pred_smpl_shape_list = [outputs_shapes[i] for i in range(num_img)]
all_pred_kp3d_list = [outputs_kp3ds[i] for i in range(num_img)]
all_pred_vert_list = [outputs_verts[i] for i in range(num_img)]
all_pred_cam_list = [outputs_cameras[i] for i in range(num_img)]
gt_bboxes_ignore_list = [all_gt_ignore_list for _ in range(num_img)]
if all_has_keypoints2d_list is None:
all_has_keypoints2d_list = [
all_has_keypoints2d_list for _ in range(num_img)
]
if all_has_keypoints3d_list is None:
all_has_keypoints3d_list = [
all_has_keypoints3d_list for _ in range(num_img)
]
if all_has_smpl_list is None:
all_has_smpl_list = [all_has_smpl_list for _ in range(num_img)]
# for each batch data
(kp2d_list, kp2d_weight_list, kp3d_list, kp3d_weight_list,
smpl_pose_list, smpl_pose_weight_list, smpl_shape_list,
smpl_shape_weight_list, vert_list, vert_weight_list, has_smpl_list,
has_keypoints2d_list, has_keypoints3d_list, pos_inds_list,
neg_inds_list) = multi_apply(
self.prepare_targets,
all_pred_smpl_pose_list,
all_pred_smpl_shape_list,
all_pred_kp3d_list,
all_pred_vert_list,
all_pred_cam_list,
all_gt_smpl_body_pose_list,
all_gt_smpl_betas_list,
all_gt_kp2d_list,
all_gt_kp3d_list,
all_has_keypoints2d_list,
all_has_keypoints3d_list,
all_has_smpl_list,
img_metas_list,
gt_bboxes_ignore_list,
)
num_total_pos = sum((inds.numel() for inds in pos_inds_list))
num_total_neg = sum((inds.numel() for inds in neg_inds_list))
K = outputs_kp3ds.shape[-2]
gt_kp2d = torch.cat(kp2d_list, 0)
kp2d_weight = torch.cat(kp2d_weight_list, 0)
pred_cam = outputs_cameras.reshape(-1, 3)
# pred_kp2d = torch.cat()
gt_kp3d = torch.cat(kp3d_list, 0)
kp3d_weight = torch.cat(kp3d_weight_list, 0)
pred_kp3d = outputs_kp3ds.reshape(-1, K, 3)
gt_smpl_pose = torch.cat(smpl_pose_list, 0)
smpl_pose_weight = torch.cat(smpl_pose_weight_list, 0)
pred_smpl_pose = outputs_poses.reshape(-1, 24, 3, 3)
gt_smpl_shape = torch.cat(smpl_shape_list, 0)
smpl_shape_weight = torch.cat(smpl_shape_weight_list, 0)
pred_smpl_shape = outputs_shapes.reshape(-1, 10)
gt_vert = torch.cat(vert_list, 0)
vert_weight = torch.cat(vert_weight_list, 0)
pred_verts = outputs_verts.reshape(-1, 6890, 3)
has_smpl = torch.cat(has_smpl_list, 0).squeeze()
has_keypoints2d = torch.cat(has_keypoints2d_list, 0).squeeze()
has_keypoints3d = torch.cat(has_keypoints3d_list, 0).squeeze()
# losses = {}
if self.loss_keypoints2d is not None:
keypoints2d_loss = self.compute_keypoints2d_loss(
pred_kp3d, pred_cam, gt_kp2d, has_keypoints2d=has_keypoints2d)
else:
keypoints2d_loss = 0.0
if self.loss_keypoints3d is not None:
keypoints3d_loss = self.compute_keypoints3d_loss(
pred_kp3d,
gt_kp3d,
has_keypoints3d=has_keypoints3d,
)
else:
keypoints3d_loss = 0.0
if self.loss_vertex is not None:
vertex_loss = self.compute_vertex_loss(pred_verts,
gt_vert,
has_smpl=has_smpl)
else:
vertex_loss = 0.0
if self.loss_smpl_pose is not None:
smpl_pose_loss = self.compute_smpl_pose_loss(pred_smpl_pose,
gt_smpl_pose,
has_smpl=has_smpl)
else:
smpl_pose_loss = 0.0
if self.loss_smpl_betas is not None:
smpl_betas_loss = self.compute_smpl_betas_loss(pred_smpl_shape,
gt_smpl_shape,
has_smpl=has_smpl)
else:
smpl_betas_loss = 0.0
# if self.loss_iou is not None:
# losses['iou_loss'] = self.loss_iou()
# if self.loss_bbox is not None:
# losses['bbox_loss'] = self.loss_bbox()
# if self.loss_cls is not None:
# losses['cls_loss'] = self.loss_bbox()
return (keypoints2d_loss, keypoints3d_loss, vertex_loss,
smpl_pose_loss, smpl_betas_loss)
def prepare_targets(self, pred_smpl_pose, pred_smpl_shape, pred_kp3d,
pred_vert, pred_cam, gt_smpl_pose, gt_smpl_shape,
gt_kp2d, gt_kp3d, has_keypoints2d, has_keypoints3d,
has_smpl, img_meta, gt_bboxes_ignore):
"""_summary_
Args:
all_pred_smpl_pose (_type_): _description_
all_pred_smpl_shape (_type_): _description_
all_pred_kp3d (_type_): _description_
all_pred_vert (_type_): _description_
all_gt_smpl_body_pose (_type_): _description_
all_gt_smpl_betas (_type_): _description_
all_gt_kp2d (_type_): _description_
all_gt_kp3d (_type_): with shape [N, K, D]
img_meta (_type_): _description_
gt_bboxes_ignore (_type_): _description_
"""
num_query = pred_smpl_pose.shape[0]
assign_result = self.assigner.assign(pred_smpl_pose, pred_smpl_shape,
pred_kp3d, pred_vert, pred_cam,
gt_smpl_pose, gt_smpl_shape,
gt_kp2d, gt_kp3d, has_keypoints2d,
has_keypoints3d, has_smpl,
img_meta, gt_bboxes_ignore)
gt_smpl_pose = gt_smpl_pose.float()
gt_smpl_shape = gt_smpl_shape.float()
gt_kp2d = gt_kp2d.float()
gt_kp3d = gt_kp3d.float()
has_keypoints2d = has_keypoints2d.float()
has_keypoints3d = has_keypoints3d.float()
has_smpl = has_smpl.float()
sampling_result = self.sampler.sample(assign_result, pred_smpl_pose,
gt_smpl_pose)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
# img_h, img_w, _ = img_meta['img_shape']
# kp2d target
kp2d_targets = torch.zeros_like(pred_kp3d[..., :2])
kp2d_weights = torch.zeros_like(pred_kp3d[..., :2])
kp2d_targets[pos_inds] = gt_kp2d[sampling_result.pos_assigned_gt_inds][
..., :2]
kp2d_weights[pos_inds] = gt_kp2d[sampling_result.pos_assigned_gt_inds][
..., [2]].repeat(1, 1, 2)
kp2d_targets = torch.cat(
[kp2d_targets, kp2d_weights[..., 0].unsqueeze(-1)], dim=-1)
# kp3d target
kp3d_targets = torch.zeros_like(pred_kp3d)
kp3d_weights = torch.zeros_like(pred_kp3d)
kp3d_targets[pos_inds] = gt_kp3d[sampling_result.pos_assigned_gt_inds][
..., :3]
kp3d_weights[pos_inds] = gt_kp3d[sampling_result.pos_assigned_gt_inds][
..., [3]].repeat(1, 1, 3)
kp3d_targets = torch.cat(
[kp3d_targets, kp3d_weights[..., 0].unsqueeze(-1)], dim=-1)
# smpl_pose target
smpl_pose_targets = torch.zeros_like(pred_smpl_pose)
smpl_pose_weights = torch.zeros_like(pred_smpl_pose)
gt_smpl_pose_rotmat = batch_rodrigues(gt_smpl_pose.view(-1, 3)).view(
-1, 24, 3, 3)
smpl_pose_targets[pos_inds] = gt_smpl_pose_rotmat[
sampling_result.pos_assigned_gt_inds]
smpl_pose_weights[pos_inds] = 1.0
# smpl_beta target
smpl_shape_targets = torch.zeros_like(pred_smpl_shape)
smpl_shape_weights = torch.zeros_like(pred_smpl_shape)
smpl_shape_targets[pos_inds] = gt_smpl_shape[
sampling_result.pos_assigned_gt_inds]
smpl_shape_weights[pos_inds] = 1.0
# verts
if self.body_model_train is not None:
gt_output = self.body_model_train(
betas=gt_smpl_shape,
body_pose=gt_smpl_pose_rotmat[:, 1:],
global_orient=gt_smpl_pose_rotmat[:, 0].unsqueeze(1),
pose2rot=False)
gt_vertices = gt_output['vertices']
gt_model_joints = gt_output['joints']
vert_targets = torch.zeros_like(pred_vert)
vert_weights = torch.zeros_like(pred_vert)
vert_targets[pos_inds] = gt_vertices[
sampling_result.pos_assigned_gt_inds]
vert_weights[pos_inds] = 1.0
if has_keypoints2d is not None:
has_keypoints2d_ = torch.zeros(
(num_query, 1)).to(smpl_pose_targets.device)
has_keypoints2d_[pos_inds] = has_keypoints2d[
sampling_result.pos_assigned_gt_inds]
else:
has_keypoints2d_ = None
if has_keypoints3d is not None:
has_keypoints3d_ = torch.zeros(
(num_query, 1)).to(smpl_pose_targets.device)
has_keypoints3d_[pos_inds] = has_keypoints3d[
sampling_result.pos_assigned_gt_inds]
else:
has_keypoints3d_ = None
if has_smpl is not None:
has_smpl_ = torch.zeros(
(num_query, 1)).to(smpl_pose_targets.device)
# if len(sampling_result.pos_assigned_gt_inds) == 1:
# has_smpl_[pos_inds] = has_smpl
# else:
has_smpl_[pos_inds] = has_smpl[
sampling_result.pos_assigned_gt_inds]
else:
has_smpl_ = None
return (kp2d_targets, kp2d_weights, kp3d_targets, kp3d_weights,
smpl_pose_targets, smpl_pose_weights, smpl_shape_targets,
smpl_shape_weights, vert_targets, vert_weights, has_smpl_,
has_keypoints2d_, has_keypoints3d_, pos_inds, neg_inds)
def forward_test(self, img, img_metas, **kwargs):
batch_input_shape = tuple(img[0].size()[-2:])
for img_meta in img_metas:
img_meta['batch_input_shape'] = batch_input_shape
features = self.backbone(img)
if self.neck is not None:
features = self.neck(features)
pred_pose, pred_betas, pred_cam, _, _ = \
self.head(features, img_metas)
# pred_pose = pred_pose[-1]
# pred_betas = pred_betas[-1]
# pred_cam = pred_cam[-1]
L, B, N = pred_pose.shape[:3]
if self.body_model_test is not None:
pred_output = self.body_model_test(
betas=pred_betas.reshape(L * B * N, 10),
body_pose=pred_pose.reshape(L * B * N, 24, 3, 3)[:, 1:],
global_orient=pred_pose.reshape(L * B * N, 24, 3,
3)[:, 0].unsqueeze(1),
pose2rot=False)
else:
raise ValueError('Please provide a builded body model.')
pred_keypoints_3d = pred_output['joints'].reshape(L, B, N, -1, 3)
pred_keypoints_3d = (pred_keypoints_3d -
pred_keypoints_3d[..., [0], :])
pred_keypoints_3d = pred_keypoints_3d.detach().cpu().numpy()
# pred_vertices = pred_output['vertices'].reshape(L, B, N, 6890, 3)
pred_cam = pred_cam.detach().cpu().numpy()
pred_pose = pred_pose.detach().cpu().numpy()
pred_betas = pred_betas.detach().cpu().numpy()
# batch, instance_num, kp_num, 4
gt_keypoints3d = kwargs['keypoints3d'].repeat([1, N, 1, 1]).clone()
# keypoints3d_mask = kwargs['keypoints3d_mask']
gt_keypoints3d = gt_keypoints3d.detach().cpu().numpy()
# gt_keypoints3d, _ = convert_kps(
# gt_keypoints3d,
# src='human_data',
# dst='h36m')
cost = np.sum((pred_keypoints_3d[-1] - gt_keypoints3d[..., :3]),
axis=(2, 3))
index = np.argmin(abs(cost), -1)
pred_keypoints_3d_ = []
pred_pose_ = []
pred_betas_ = []
pred_cam_ = []
for batch_i in range(B):
ind = index[batch_i]
pred_keypoints_3d_.append(pred_keypoints_3d[-1, batch_i, ind])
pred_pose_.append(pred_pose[-1, batch_i, ind])
pred_betas_.append(pred_betas[-1, batch_i, ind])
pred_cam_.append(pred_cam[-1, batch_i, ind])
# for img_id in range(len(img_metas)):
# pred_pose_ = pred_pose[:, img_id]
# pred_betas_ = pred_betas[:, img_id]
# pred_cam_ = pred_cam[:, img_id]
# pred_keypoints_3d_ = pred_keypoints_3d[:, img_id]
# pred_vertices_ = pred_vertices[:, img_id]
# img_shape_ = img_metas[img_id]['img_shape']
# result_list.append()
all_preds = {}
all_preds['keypoints_3d'] = np.array(pred_keypoints_3d_)
all_preds['smpl_pose'] = np.array(pred_pose_)
all_preds['smpl_beta'] = np.array(pred_betas_)
all_preds['camera'] = np.array(pred_cam_)
# all_preds['vertices'] = pred_vertices.detach().cpu().numpy()
image_path = []
for img_meta in img_metas:
image_path.append(img_meta['image_path'])
all_preds['image_path'] = image_path
all_preds['image_idx'] = kwargs['sample_idx']
return all_preds
# loss
def compute_keypoints3d_loss(
self,
pred_keypoints3d: torch.Tensor,
gt_keypoints3d: torch.Tensor,
has_keypoints3d: Optional[torch.Tensor] = None):
"""Compute loss for 3d keypoints."""
keypoints3d_conf = gt_keypoints3d[:, :, 3].float().unsqueeze(-1)
keypoints3d_conf = keypoints3d_conf.repeat(1, 1, 3)
pred_keypoints3d = pred_keypoints3d.float()
gt_keypoints3d = gt_keypoints3d[:, :, :3].float()
# currently, only mpi_inf_3dhp and h36m have 3d keypoints
# both datasets have right_hip_extra and left_hip_extra
right_hip_idx = get_keypoint_idx('right_hip_extra', self.convention)
left_hip_idx = get_keypoint_idx('left_hip_extra', self.convention)
gt_pelvis = (gt_keypoints3d[:, right_hip_idx, :] +
gt_keypoints3d[:, left_hip_idx, :]) / 2
pred_pelvis = (pred_keypoints3d[:, right_hip_idx, :] +
pred_keypoints3d[:, left_hip_idx, :]) / 2
gt_keypoints3d = gt_keypoints3d - gt_pelvis[:, None, :]
pred_keypoints3d = pred_keypoints3d - pred_pelvis[:, None, :]
loss = self.loss_keypoints3d(pred_keypoints3d,
gt_keypoints3d,
reduction_override='none')
# If has_keypoints3d is not None, then computes the losses on the
# instances that have ground-truth keypoints3d.
# But the zero confidence keypoints will be included in mean.
# Otherwise, only compute the keypoints3d
# which have positive confidence.
# has_keypoints3d is None when the key has_keypoints3d
# is not in the datasets
if has_keypoints3d is None:
valid_pos = keypoints3d_conf > 0
if keypoints3d_conf[valid_pos].numel() == 0:
return torch.Tensor([0]).type_as(gt_keypoints3d)
loss = torch.sum(loss * keypoints3d_conf)
loss /= keypoints3d_conf[valid_pos].numel()
else:
keypoints3d_conf = keypoints3d_conf[has_keypoints3d == 1]
if keypoints3d_conf.shape[0] == 0:
return torch.Tensor([0]).type_as(gt_keypoints3d)
loss = loss[has_keypoints3d == 1]
loss = (loss * keypoints3d_conf).mean()
return loss
def compute_keypoints2d_loss(
self,
pred_keypoints3d: torch.Tensor,
pred_cam: torch.Tensor,
gt_keypoints2d: torch.Tensor,
img_res: Optional[int] = 512,
focal_length: Optional[int] = 5000.,
has_keypoints2d: Optional[torch.Tensor] = None):
"""Compute loss for 2d keypoints."""
keypoints2d_conf = gt_keypoints2d[:, :, 2].float().unsqueeze(-1)
keypoints2d_conf = keypoints2d_conf.repeat(1, 1, 2)
gt_keypoints2d = gt_keypoints2d[:, :, :2].float()
pred_keypoints2d = project_points(pred_keypoints3d,
pred_cam,
focal_length=focal_length,
img_res=img_res)
# Normalize keypoints to [-1,1]
# The coordinate origin of pred_keypoints_2d is
# the center of the input image.
pred_keypoints2d = 2 * pred_keypoints2d / (img_res - 1)
# The coordinate origin of gt_keypoints_2d is
# the top left corner of the input image.
gt_keypoints2d = 2 * gt_keypoints2d / (img_res - 1) - 1
loss = self.loss_keypoints2d(pred_keypoints2d,
gt_keypoints2d,
reduction_override='none')
# If has_keypoints2d is not None, then computes the losses on the
# instances that have ground-truth keypoints2d.
# But the zero confidence keypoints will be included in mean.
# Otherwise, only compute the keypoints2d
# which have positive confidence.
# has_keypoints2d is None when the key has_keypoints2d
# is not in the datasets
if has_keypoints2d is None:
valid_pos = keypoints2d_conf > 0
if keypoints2d_conf[valid_pos].numel() == 0:
return torch.Tensor([0]).type_as(gt_keypoints2d)
loss = torch.sum(loss * keypoints2d_conf)
loss /= keypoints2d_conf[valid_pos].numel()
else:
keypoints2d_conf = keypoints2d_conf[has_keypoints2d == 1]
if keypoints2d_conf.shape[0] == 0:
return torch.Tensor([0]).type_as(gt_keypoints2d)
loss = loss[has_keypoints2d == 1]
loss = (loss * keypoints2d_conf).mean()
return loss
def compute_vertex_loss(self, pred_vertices: torch.Tensor,
gt_vertices: torch.Tensor, has_smpl: torch.Tensor):
"""Compute loss for vertices."""
gt_vertices = gt_vertices.float()
conf = has_smpl.float().view(-1, 1, 1)
conf = conf.repeat(1, gt_vertices.shape[1], gt_vertices.shape[2])
loss = self.loss_vertex(pred_vertices,
gt_vertices,
reduction_override='none')
valid_pos = conf > 0
if conf[valid_pos].numel() == 0:
return torch.Tensor([0]).type_as(gt_vertices)
loss = torch.sum(loss * conf) / conf[valid_pos].numel()
return loss
def compute_smpl_pose_loss(self, pred_pose: torch.Tensor,
gt_pose: torch.Tensor, has_smpl: torch.Tensor):
"""Compute loss for smpl pose."""
conf = has_smpl.float().view(-1)
valid_pos = conf > 0
if conf[valid_pos].numel() == 0:
return torch.Tensor([0]).type_as(gt_pose)
pred_pose = pred_pose[valid_pos]
gt_pose = gt_pose[valid_pos]
conf = conf[valid_pos]
# gt_rotmat = batch_rodrigues(gt_pose.view(-1, 3)).view(-1, 24, 3, 3)
loss = self.loss_smpl_pose(pred_pose,
gt_pose,
reduction_override='none')
loss = loss.view(loss.shape[0], -1).mean(-1)
loss = torch.mean(loss * conf)
return loss
def compute_smpl_betas_loss(self, pred_betas: torch.Tensor,
gt_betas: torch.Tensor,
has_smpl: torch.Tensor):
"""Compute loss for smpl betas."""
conf = has_smpl.float().view(-1)
valid_pos = conf > 0
if conf[valid_pos].numel() == 0:
return torch.Tensor([0]).type_as(gt_betas)
pred_betas = pred_betas[valid_pos]
gt_betas = gt_betas[valid_pos]
conf = conf[valid_pos]
loss = self.loss_smpl_betas(pred_betas,
gt_betas,
reduction_override='none')
loss = loss.view(loss.shape[0], -1).mean(-1)
loss = torch.mean(loss * conf)
return loss
def compute_camera_loss(self, cameras: torch.Tensor):
"""Compute loss for predicted camera parameters."""
loss = self.loss_camera(cameras)
return loss
|