Spaces:
Sleeping
Sleeping
File size: 32,954 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 |
import json
import os
import os.path
from abc import ABCMeta
from collections import OrderedDict
from typing import Any, List, Optional, Union
import mmcv
import numpy as np
import torch
import torch.distributed as dist
from mmcv.runner import get_dist_info
from detrsmpl.core.conventions.keypoints_mapping import (
convert_kps,
get_keypoint_num,
get_mapping,
)
from detrsmpl.core.evaluation import (
keypoint_3d_auc,
keypoint_3d_pck,
keypoint_mpjpe,
vertice_pve,
)
from detrsmpl.data.data_structures.multi_human_data import MultiHumanData
from detrsmpl.models.body_models.builder import build_body_model
from .base_dataset import BaseDataset
from .builder import DATASETS
@DATASETS.register_module()
class MultiHumanImageDataset(BaseDataset, metaclass=ABCMeta):
def __init__(self,
data_prefix: str,
pipeline: list,
body_model: Optional[Union[dict, None]] = None,
ann_file: Optional[Union[str, None]] = None,
convention: Optional[str] = 'human_data',
test_mode: Optional[bool] = False,
dataset_name: Optional[Union[str, None]] = None):
self.num_keypoints = get_keypoint_num(convention)
self.convention = convention
super(MultiHumanImageDataset,
self).__init__(data_prefix, pipeline, ann_file, test_mode,
dataset_name)
if body_model is not None:
self.body_model = build_body_model(body_model)
else:
self.body_model = None
def get_annotation_file(self):
"""Get path of the annotation file."""
ann_prefix = os.path.join(self.data_prefix, 'preprocessed_datasets')
self.ann_file = os.path.join(ann_prefix, self.ann_file)
def load_annotations(self):
"""Load annotations."""
self.get_annotation_file()
self.human_data = MultiHumanData()
self.human_data.load(self.ann_file)
self.instance_num = self.human_data.instance_num
self.image_path = self.human_data['image_path']
self.num_data = self.human_data.data_len
try:
self.frame_range = self.human_data['frame_range']
except KeyError:
self.frame_range = \
np.array([[i, i + 1] for i in range(self.num_data)])
self.num_data = self.frame_range.shape[0]
if self.human_data.check_keypoints_compressed():
self.human_data.decompress_keypoints()
# change keypoint from 'human_data' to the given convention
if 'keypoints3d_ori' in self.human_data:
keypoints3d_ori = self.human_data['keypoints3d_ori']
assert 'keypoints3d_ori_mask' in self.human_data
keypoints3d_ori_mask = self.human_data['keypoints3d_ori_mask']
keypoints3d_ori, keypoints3d_ori_mask = \
convert_kps(
keypoints3d_ori,
src='human_data',
dst=self.convention,
mask=keypoints3d_ori_mask)
self.human_data.__setitem__('keypoints3d_ori', keypoints3d_ori)
self.human_data.__setitem__('keypoints3d_ori_convention',
self.convention)
self.human_data.__setitem__('keypoints3d_ori_mask',
keypoints3d_ori_mask)
elif 'keypoints3d' in self.human_data:
keypoints3d_ori = self.human_data['keypoints3d']
assert 'keypoints3d_mask' in self.human_data
keypoints3d_ori_mask = self.human_data['keypoints3d_mask']
keypoints3d_ori, keypoints3d_ori_mask = \
convert_kps(
keypoints3d_ori,
src='human_data',
dst=self.convention,
mask=keypoints3d_ori_mask)
self.human_data.__setitem__('keypoints3d_ori', keypoints3d_ori)
self.human_data.__setitem__('keypoints3d_ori_convention',
self.convention)
self.human_data.__setitem__('keypoints3d_ori_mask',
keypoints3d_ori_mask)
if 'keypoints2d_ori' in self.human_data:
keypoints2d_ori = self.human_data['keypoints2d_ori']
assert 'keypoints2d_ori_mask' in self.human_data
keypoints2d_ori_mask = self.human_data['keypoints2d_ori_mask']
keypoints2d_ori, keypoints2d_ori_mask = \
convert_kps(
keypoints2d_ori,
src='human_data',
dst=self.convention,
mask=keypoints2d_ori_mask)
self.human_data.__setitem__('keypoints2d_ori', keypoints2d_ori)
self.human_data.__setitem__('keypoints2d_ori_convention',
self.convention)
self.human_data.__setitem__('keypoints2d_ori_mask',
keypoints2d_ori_mask)
ori_mask = keypoints2d_ori[:, :, 2]
elif 'keypoints2d' in self.human_data:
keypoints2d_ori = self.human_data['keypoints2d']
assert 'keypoints2d_mask' in self.human_data
keypoints2d_ori_mask = self.human_data['keypoints2d_mask']
keypoints2d_ori, keypoints2d_ori_mask = \
convert_kps(
keypoints2d_ori,
src='human_data',
dst=self.convention,
mask=keypoints2d_ori_mask)
self.human_data.__setitem__('keypoints2d_ori', keypoints2d_ori)
self.human_data.__setitem__('keypoints2d_ori_convention',
self.convention)
self.human_data.__setitem__('keypoints2d_ori_mask',
keypoints2d_ori_mask)
# if 'has_smpl' in self.human_data:
# index = ori_mask.sum(-1)>=8
# self.human_data['has_smpl']=self.human_data['has_smpl'][:147270]*index
# change keypoint from 'human_data' to the given convention
if 'keypoints3d_smpl' in self.human_data:
keypoints3d_smpl = self.human_data['keypoints3d_smpl']
assert 'keypoints3d_smpl_mask' in self.human_data
keypoints3d_smpl_mask = self.human_data['keypoints3d_smpl_mask']
keypoints3d_smpl, keypoints3d_smpl_mask = \
convert_kps(
keypoints3d_smpl,
src='human_data',
dst=self.convention,
mask=keypoints3d_smpl_mask)
# index = ori_mask.sum(-1)<8
# index = ori_mask.sum(-1)<8
# keypoints3d_smpl[index]=np.concatenate(
# [keypoints3d_smpl[index][:,:,:3],
# keypoints2d_ori[index][:,:,[2]]],
# -1)
self.human_data.__setitem__('keypoints3d_smpl', keypoints3d_smpl)
self.human_data.__setitem__('keypoints3d_smpl_convention',
self.convention)
self.human_data.__setitem__('keypoints3d_smpl_mask',
keypoints3d_smpl_mask)
if 'keypoints2d_smpl' in self.human_data:
keypoints2d_smpl = self.human_data['keypoints2d_smpl']
assert 'keypoints2d_smpl_mask' in self.human_data
keypoints2d_smpl_mask = self.human_data['keypoints2d_smpl_mask']
keypoints2d_smpl, keypoints2d_smpl_mask = \
convert_kps(
keypoints2d_smpl,
src='human_data',
dst=self.convention,
mask=keypoints2d_smpl_mask)
# index = ori_mask.sum(-1)<8
# keypoints2d_smpl[index]=np.concatenate(
# [keypoints2d_smpl[index][:,:,:2],
# keypoints2d_ori[index][:,:,[2]]],
# -1)
# keypoints2d_smpl[index][:,:,2]=keypoints2d_ori[index][:, :,2]
self.human_data.__setitem__('keypoints2d_smpl', keypoints2d_smpl)
self.human_data.__setitem__('keypoints2d_smpl_convention',
self.convention)
self.human_data.__setitem__('keypoints2d_smpl_mask',
keypoints2d_smpl_mask)
self.human_data.compress_keypoints_by_mask()
def prepare_raw_data(self, idx: int):
"""Get item from self.human_data."""
sample_idx = idx
frame_start, frame_end = self.frame_range[idx]
frame_num = frame_end - frame_start
# TODO: Support cache_reader?
info = {}
info['img_prefix'] = None
image_path = self.human_data['image_path'][frame_start]
info['image_path'] = os.path.join(self.data_prefix, 'datasets',
self.dataset_name, image_path)
# TODO: Support smc?
info['dataset_name'] = self.dataset_name
info['sample_idx'] = sample_idx
if 'bbox_xywh' in self.human_data:
info['bbox_xywh'] = self.human_data['bbox_xywh'][
frame_start:frame_end]
center, scale = [], []
for bbox in info['bbox_xywh']:
x, y, w, h, s = bbox
cx = x + w / 2
cy = y + h / 2
# TODO: verify if we should keep w = h = max(w, h) for multi human data
w = h = max(w, h)
center.append([cx, cy])
scale.append([w, h])
info['center'] = np.array(center)
info['scale'] = np.array(scale)
else:
info['bbox_xywh'] = np.zeros((frame_num, 5))
info['center'] = np.zeros((frame_num, 2))
info['scale'] = np.zeros((frame_num, 2))
if 'keypoints2d_ori' in self.human_data:
info['keypoints2d_ori'] = self.human_data['keypoints2d_ori'][
frame_start:frame_end]
conf = info['keypoints2d_ori'][..., -1].sum(-1) > 0
info['has_keypoints2d_ori'] = np.ones(
(frame_num, 1)) * conf[..., None]
else:
info['keypoints2d_ori'] = np.zeros(
(frame_num, self.num_keypoints, 3))
info['has_keypoints2d_ori'] = np.zeros((frame_num, 1))
if 'keypoints3d_ori' in self.human_data:
info['keypoints3d_ori'] = self.human_data['keypoints3d_ori'][
frame_start:frame_end]
conf = info['keypoints3d_ori'][..., -1].sum(-1) > 0
info['has_keypoints3d_ori'] = np.ones(
(frame_num, 1)) * conf[..., None]
else:
info['keypoints3d_ori'] = np.zeros(
(frame_num, self.num_keypoints, 4))
info['has_keypoints3d_ori'] = np.zeros((frame_num, 1))
if 'keypoints2d_smpl' in self.human_data:
info['keypoints2d_smpl'] = self.human_data['keypoints2d_smpl'][
frame_start:frame_end]
conf = info['keypoints2d_smpl'][..., -1].sum(-1) > 0
info['has_keypoints2d_smpl'] = np.ones(
(frame_num, 1)) * conf[..., None]
else:
info['keypoints2d_smpl'] = np.zeros(
(frame_num, self.num_keypoints, 3))
info['has_keypoints2d_smpl'] = np.zeros((frame_num, 1))
if 'keypoints3d_smpl' in self.human_data:
info['keypoints3d_smpl'] = self.human_data['keypoints3d_smpl'][
frame_start:frame_end]
conf = info['keypoints3d_smpl'][..., -1].sum(-1) > 0
info['has_keypoints3d_smpl'] = np.ones(
(frame_num, 1)) * conf[..., None]
else:
info['keypoints3d_smpl'] = np.zeros(
(frame_num, self.num_keypoints, 4))
info['has_keypoints3d_smpl'] = np.zeros((frame_num, 1))
if 'smpl' in self.human_data:
if 'has_smpl' in self.human_data:
info['has_smpl'] = \
self.human_data['has_smpl'][frame_start:frame_end]
else:
info['has_smpl'] = np.ones((frame_num, 1))
smpl_dict = self.human_data['smpl']
else:
info['has_smpl'] = np.zeros((frame_num, 1))
smpl_dict = {}
if 'body_pose' in smpl_dict:
info['smpl_body_pose'] = smpl_dict['body_pose'][
frame_start:frame_end]
else:
info['smpl_body_pose'] = np.zeros((frame_num, 23, 3))
if 'global_orient' in smpl_dict:
info['smpl_global_orient'] = smpl_dict['global_orient'][
frame_start:frame_end]
else:
info['smpl_global_orient'] = np.zeros((frame_num, 3))
if 'betas' in smpl_dict:
info['smpl_betas'] = smpl_dict['betas'][frame_start:frame_end]
else:
info['smpl_betas'] = np.zeros((frame_num, 10))
if 'transl' in smpl_dict:
info['smpl_transl'] = smpl_dict['transl'][frame_start:frame_end]
else:
info['smpl_transl'] = np.zeros((frame_num, 3))
if 'area' in self.human_data:
info['area'] = self.human_data['area'][frame_start:frame_end]
else:
info['area'] = np.zeros((frame_num, 0))
return info
def prepare_data(self, idx: int):
"""Generate and transform data."""
info = self.prepare_raw_data(idx)
return self.pipeline(info)
def evaluate(self,
outputs: list,
res_folder: str,
metric: Optional[Union[str, List[str]]] = 'pa-mpjpe',
**kwargs: dict):
"""Evaluate 3D keypoint results.
Args:
outputs (list): results from model inference.
res_folder (str): path to store results.
metric (Optional[Union[str, List(str)]]):
the type of metric. Default: 'pa-mpjpe'
kwargs (dict): other arguments.
Returns:
dict:
A dict of all evaluation results.
"""
metrics = metric if isinstance(metric, list) else [metric]
for metric in metrics:
if metric not in self.ALLOWED_METRICS:
raise KeyError(f'metric {metric} is not supported')
res_file = os.path.join(res_folder, 'result_keypoints.json')
# for keeping correctness during multi-gpu test, we sort all results
res_dict = {}
# 'scores', 'labels', 'boxes', 'keypoints', 'pred_smpl_pose',
# 'pred_smpl_beta', 'pred_smpl_cam', 'pred_smpl_kp3d',
# 'gt_smpl_pose', 'gt_smpl_beta', 'gt_smpl_kp3d', 'gt_boxes',
# 'gt_keypoints', 'image_idx'
for out in outputs:
target_id = out['image_idx']
batch_size = len(out['pred_smpl_kp3d'])
for i in range(batch_size):
res_dict[int(target_id[i])] = dict(
keypoints=out['pred_smpl_kp3d'][i],
gt_poses=out['gt_smpl_pose'][i],
gt_betas=out['gt_smpl_beta'][i],
pred_poses=out['pred_smpl_pose'][i],
pred_betas=out['pred_smpl_beta'][i])
keypoints, gt_poses, gt_betas, pred_poses, pred_betas = \
[], [], [], [], []
# print(self.num_data)
for i in range(self.num_data):
keypoints.append(res_dict[i]['keypoints'])
gt_poses.append(res_dict[i]['gt_poses'])
gt_betas.append(res_dict[i]['gt_betas'])
pred_poses.append(res_dict[i]['pred_poses'])
pred_betas.append(res_dict[i]['pred_betas'])
res = dict(keypoints=keypoints,
gt_poses=gt_poses,
gt_betas=gt_betas,
pred_poses=pred_poses,
pred_betas=pred_betas)
# mmcv.dump(res, res_file)
name_value_tuples = []
for _metric in metrics:
if _metric == 'mpjpe':
_nv_tuples = self._report_mpjpe(res)
elif _metric == 'pa-mpjpe':
_nv_tuples = self._report_mpjpe(res, metric='pa-mpjpe')
print(_nv_tuples)
elif _metric == '3dpck':
_nv_tuples = self._report_3d_pck(res)
elif _metric == 'pa-3dpck':
_nv_tuples = self._report_3d_pck(res, metric='pa-3dpck')
elif _metric == '3dauc':
_nv_tuples = self._report_3d_auc(res)
elif _metric == 'pa-3dauc':
_nv_tuples = self._report_3d_auc(res, metric='pa-3dauc')
elif _metric == 'pve':
_nv_tuples = self._report_pve(res)
elif _metric == 'ihmr':
_nv_tuples = self._report_ihmr(res)
else:
raise NotImplementedError
name_value_tuples.extend(_nv_tuples)
name_value = OrderedDict(name_value_tuples)
return name_value
@staticmethod
def _write_keypoint_results(keypoints: Any, res_file: str):
"""Write results into a json file."""
with open(res_file, 'w') as f:
json.dump(keypoints, f, sort_keys=True, indent=4)
def _parse_result(self, res, mode='keypoint', body_part=None):
"""Parse results."""
if mode == 'vertice':
# gt
gt_beta, gt_pose, gt_global_orient, gender = [], [], [], []
gt_smpl_dict = self.human_data['smpl']
for idx in range(self.num_data):
gt_beta.append(gt_smpl_dict['betas'][idx])
gt_pose.append(gt_smpl_dict['body_pose'][idx])
gt_global_orient.append(gt_smpl_dict['global_orient'][idx])
if self.human_data['meta']['gender'][idx] == 'm':
gender.append(0)
else:
gender.append(1)
gt_beta = torch.FloatTensor(gt_beta)
gt_pose = torch.FloatTensor(gt_pose).view(-1, 69)
gt_global_orient = torch.FloatTensor(gt_global_orient)
gender = torch.Tensor(gender)
gt_output = self.body_model(betas=gt_beta,
body_pose=gt_pose,
global_orient=gt_global_orient,
gender=gender)
gt_vertices = gt_output['vertices'].detach().cpu().numpy() * 1000.
gt_mask = np.ones(gt_vertices.shape[:-1])
# pred
pred_pose = torch.FloatTensor(res['pred_poses'])
pred_beta = torch.FloatTensor(res['pred_betas'])
pred_output = self.body_model(
betas=pred_beta[:, 0],
body_pose=pred_pose[:, 0, 1:],
global_orient=pred_pose[:, 0, 0].unsqueeze(1),
pose2rot=False)
pred_vertices = pred_output['vertices'].detach().cpu().numpy(
) * 1000.
assert len(pred_vertices) == self.num_data
return pred_vertices, gt_vertices, gt_mask
elif mode == 'keypoint':
pred_keypoints3d = res['keypoints']
assert len(pred_keypoints3d) == self.num_data
# (B, 17, 3)
pred_keypoints3d = np.array(pred_keypoints3d).reshape(
len(pred_keypoints3d), -1, 3)
# pred_keypoints3d,_ = convert_kps(
# pred_keypoints3d,
# src='smpl_54',
# dst='h36m',
# )
gt_smpl_pose = np.array(res['gt_poses'])
gt_body_pose = gt_smpl_pose[..., 1:, :]
gt_global_orient = gt_smpl_pose[..., 0, :]
gt_betas = np.array(res['gt_betas'])
gender = np.zeros([gt_betas.shape[0], gt_betas.shape[1]])
if self.dataset_name == 'pw3d':
# betas = []
# body_pose = []
# global_orient = []
# gender = []
# smpl_dict = self.human_data['smpl']
# for idx in range(self.num_data):
# betas.append(smpl_dict['betas'][idx])
# body_pose.append(smpl_dict['body_pose'][idx])
# global_orient.append(smpl_dict['global_orient'][idx])
# if self.human_data['meta']['gender'][idx] == 'm':
# gender.append(0)
# else:
# gender.append(1)
betas = torch.FloatTensor(gt_betas).view(-1, 10)
body_pose = torch.FloatTensor(gt_body_pose).view(-1, 69)
global_orient = torch.FloatTensor(gt_global_orient).view(-1, 3)
gender = torch.Tensor(gender).view(-1)
gt_output = self.body_model(betas=betas,
body_pose=body_pose,
global_orient=global_orient,
gender=gender)
gt_keypoints3d = gt_output['joints'].detach().cpu().numpy()
# gt_keypoints3d,_ = convert_kps(
# gt_keypoints3d,
# src='smpl_54',
# dst='h36m')
gt_keypoints3d_mask = np.ones((len(pred_keypoints3d), 17))
elif self.dataset_name == 'h36m':
_, h36m_idxs, _ = get_mapping('human_data', 'h36m')
gt_keypoints3d = \
self.human_data['keypoints3d'][:, h36m_idxs, :3]
gt_keypoints3d_mask = np.ones((len(pred_keypoints3d), 17))
elif self.dataset_name == 'humman':
betas = []
body_pose = []
global_orient = []
smpl_dict = self.human_data['smpl']
for idx in range(self.num_data):
betas.append(smpl_dict['betas'][idx])
body_pose.append(smpl_dict['body_pose'][idx])
global_orient.append(smpl_dict['global_orient'][idx])
betas = torch.FloatTensor(betas)
body_pose = torch.FloatTensor(body_pose).view(-1, 69)
global_orient = torch.FloatTensor(global_orient)
gt_output = self.body_model(betas=betas,
body_pose=body_pose,
global_orient=global_orient)
gt_keypoints3d = gt_output['joints'].detach().cpu().numpy()
gt_keypoints3d_mask = np.ones((len(pred_keypoints3d), 24))
else:
raise NotImplementedError()
# SMPL_49 only!
if gt_keypoints3d.shape[1] == 49:
assert pred_keypoints3d.shape[1] == 49
gt_keypoints3d = gt_keypoints3d[:, 25:, :]
pred_keypoints3d = pred_keypoints3d[:, 25:, :]
joint_mapper = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18]
gt_keypoints3d = gt_keypoints3d[:, joint_mapper, :]
pred_keypoints3d = pred_keypoints3d[:, joint_mapper, :]
# we only evaluate on 14 lsp joints
pred_pelvis = (pred_keypoints3d[:, 2] +
pred_keypoints3d[:, 3]) / 2
gt_pelvis = (gt_keypoints3d[:, 2] + gt_keypoints3d[:, 3]) / 2
# H36M for testing!
elif gt_keypoints3d.shape[1] == 17:
assert pred_keypoints3d.shape[-2] == 17
H36M_TO_J17 = [
6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10, 0, 7, 9
]
H36M_TO_J14 = H36M_TO_J17[:14]
joint_mapper = H36M_TO_J14
pred_pelvis = pred_keypoints3d[:, 0]
gt_pelvis = gt_keypoints3d[:, 0]
gt_keypoints3d = gt_keypoints3d[:, joint_mapper, :]
pred_keypoints3d = pred_keypoints3d[:, joint_mapper, :]
# keypoint 24
elif gt_keypoints3d.shape[1] == 24:
assert pred_keypoints3d.shape[1] == 24
joint_mapper = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18]
gt_keypoints3d = gt_keypoints3d[:, joint_mapper, :]
pred_keypoints3d = pred_keypoints3d[:, joint_mapper, :]
# we only evaluate on 14 lsp joints
pred_pelvis = (pred_keypoints3d[:, 2] +
pred_keypoints3d[:, 3]) / 2
gt_pelvis = (gt_keypoints3d[:, 2] + gt_keypoints3d[:, 3]) / 2
else:
pass
pred_keypoints3d = (pred_keypoints3d -
pred_pelvis[:, None, :]) * 1000
gt_keypoints3d = (gt_keypoints3d - gt_pelvis[:, None, :]) * 1000
gt_keypoints3d_mask = gt_keypoints3d_mask[:, joint_mapper] > 0
return pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask
def _report_mpjpe(self, res_file, metric='mpjpe', body_part=''):
"""Cauculate mean per joint position error (MPJPE) or its variants PA-
MPJPE.
Report mean per joint position error (MPJPE) and mean per joint
position error after rigid alignment (PA-MPJPE)
"""
pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask = \
self._parse_result(res_file, mode='keypoint', body_part=body_part)
err_name = metric.upper()
if body_part != '':
err_name = body_part.upper() + ' ' + err_name
if metric == 'mpjpe':
alignment = 'none'
elif metric == 'pa-mpjpe':
alignment = 'procrustes'
else:
raise ValueError(f'Invalid metric: {metric}')
error = keypoint_mpjpe(pred_keypoints3d, gt_keypoints3d,
gt_keypoints3d_mask, alignment)
info_str = [(err_name, error)]
return info_str
def _report_3d_pck(self, res_file, metric='3dpck'):
"""Cauculate Percentage of Correct Keypoints (3DPCK) w. or w/o
Procrustes alignment.
Args:
keypoint_results (list): Keypoint predictions. See
'Body3DMpiInf3dhpDataset.evaluate' for details.
metric (str): Specify mpjpe variants. Supported options are:
- ``'3dpck'``: Standard 3DPCK.
- ``'pa-3dpck'``:
3DPCK after aligning prediction to groundtruth
via a rigid transformation (scale, rotation and
translation).
"""
pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask = \
self._parse_result(res_file)
err_name = metric.upper()
if metric == '3dpck':
alignment = 'none'
elif metric == 'pa-3dpck':
alignment = 'procrustes'
else:
raise ValueError(f'Invalid metric: {metric}')
error = keypoint_3d_pck(pred_keypoints3d, gt_keypoints3d,
gt_keypoints3d_mask, alignment)
name_value_tuples = [(err_name, error)]
return name_value_tuples
def _report_3d_auc(self, res_file, metric='3dauc'):
"""Cauculate the Area Under the Curve (AUC) computed for a range of
3DPCK thresholds.
Args:
keypoint_results (list): Keypoint predictions. See
'Body3DMpiInf3dhpDataset.evaluate' for details.
metric (str): Specify mpjpe variants. Supported options are:
- ``'3dauc'``: Standard 3DAUC.
- ``'pa-3dauc'``: 3DAUC after aligning prediction to
groundtruth via a rigid transformation (scale, rotation and
translation).
"""
pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask = \
self._parse_result(res_file)
err_name = metric.upper()
if metric == '3dauc':
alignment = 'none'
elif metric == 'pa-3dauc':
alignment = 'procrustes'
else:
raise ValueError(f'Invalid metric: {metric}')
error = keypoint_3d_auc(pred_keypoints3d, gt_keypoints3d,
gt_keypoints3d_mask, alignment)
name_value_tuples = [(err_name, error)]
return name_value_tuples
def _report_pve(self, res_file, metric='pve', body_part=''):
"""Cauculate per vertex error."""
pred_verts, gt_verts, _ = \
self._parse_result(res_file, mode='vertice', body_part=body_part)
err_name = metric.upper()
if body_part != '':
err_name = body_part.upper() + ' ' + err_name
if metric == 'pve':
alignment = 'none'
elif metric == 'pa-pve':
alignment = 'procrustes'
else:
raise ValueError(f'Invalid metric: {metric}')
error = vertice_pve(pred_verts, gt_verts, alignment)
return [(err_name, error)]
def _report_ihmr(self, res_file):
"""Calculate IHMR metric.
https://arxiv.org/abs/2203.16427
"""
pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask = \
self._parse_result(res_file, mode='keypoint')
pred_verts, gt_verts, _ = \
self._parse_result(res_file, mode='vertice')
from detrsmpl.utils.geometry import rot6d_to_rotmat
mean_param_path = 'data/body_models/smpl_mean_params.npz'
mean_params = np.load(mean_param_path)
mean_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
mean_shape = torch.from_numpy(
mean_params['shape'][:].astype('float32')).unsqueeze(0)
mean_pose = rot6d_to_rotmat(mean_pose).view(1, 24, 3, 3)
mean_output = self.body_model(betas=mean_shape,
body_pose=mean_pose[:, 1:],
global_orient=mean_pose[:, :1],
pose2rot=False)
mean_verts = mean_output['vertices'].detach().cpu().numpy() * 1000.
dis = (gt_verts - mean_verts) * (gt_verts - mean_verts)
dis = np.sqrt(dis.sum(axis=-1)).mean(axis=-1)
# from the most remote one to the nearest one
idx_order = np.argsort(dis)[::-1]
num_data = idx_order.shape[0]
def report_ihmr_idx(idx):
mpvpe = vertice_pve(pred_verts[idx], gt_verts[idx])
mpjpe = keypoint_mpjpe(pred_keypoints3d[idx], gt_keypoints3d[idx],
gt_keypoints3d_mask[idx], 'none')
pampjpe = keypoint_mpjpe(pred_keypoints3d[idx],
gt_keypoints3d[idx],
gt_keypoints3d_mask[idx], 'procrustes')
return (mpvpe, mpjpe, pampjpe)
def report_ihmr_tail(percentage):
cur_data = int(num_data * percentage / 100.0)
idx = idx_order[:cur_data]
mpvpe, mpjpe, pampjpe = report_ihmr_idx(idx)
res_mpvpe = ('bMPVPE Tail ' + str(percentage) + '%', mpvpe)
res_mpjpe = ('bMPJPE Tail ' + str(percentage) + '%', mpjpe)
res_pampjpe = ('bPA-MPJPE Tail ' + str(percentage) + '%', pampjpe)
return [res_mpvpe, res_mpjpe, res_pampjpe]
def report_ihmr_all(num_bin):
num_per_bin = np.array([0 for _ in range(num_bin)
]).astype(np.float32)
sum_mpvpe = np.array([0
for _ in range(num_bin)]).astype(np.float32)
sum_mpjpe = np.array([0
for _ in range(num_bin)]).astype(np.float32)
sum_pampjpe = np.array([0 for _ in range(num_bin)
]).astype(np.float32)
max_dis = dis[idx_order[0]]
min_dis = dis[idx_order[-1]]
delta = (max_dis - min_dis) / num_bin
for i in range(num_data):
idx = int((dis[i] - min_dis) / delta - 0.001)
res_mpvpe, res_mpjpe, res_pampjpe = report_ihmr_idx([i])
num_per_bin[idx] += 1
sum_mpvpe[idx] += res_mpvpe
sum_mpjpe[idx] += res_mpjpe
sum_pampjpe[idx] += res_pampjpe
for i in range(num_bin):
if num_per_bin[i] > 0:
sum_mpvpe[i] = sum_mpvpe[i] / num_per_bin[i]
sum_mpjpe[i] = sum_mpjpe[i] / num_per_bin[i]
sum_pampjpe[i] = sum_pampjpe[i] / num_per_bin[i]
valid_idx = np.where(num_per_bin > 0)
res_mpvpe = ('bMPVPE All', sum_mpvpe[valid_idx].mean())
res_mpjpe = ('bMPJPE All', sum_mpjpe[valid_idx].mean())
res_pampjpe = ('bPA-MPJPE All', sum_pampjpe[valid_idx].mean())
return [res_mpvpe, res_mpjpe, res_pampjpe]
metrics = []
metrics.extend(report_ihmr_all(num_bin=100))
metrics.extend(report_ihmr_tail(percentage=10))
metrics.extend(report_ihmr_tail(percentage=5))
return metrics
|