File size: 17,829 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import os
import os.path
import pickle
from collections import OrderedDict
from typing import List, Optional, Union

import numpy as np
import torch

from detrsmpl.core.conventions.keypoints_mapping import (
    get_keypoint_idx,
    get_keypoint_idxs_by_part,
)
from detrsmpl.core.evaluation import fg_vertices_to_mesh_distance
from detrsmpl.utils.transforms import aa_to_rotmat
from .builder import DATASETS
from .human_image_dataset import HumanImageDataset


@DATASETS.register_module()
class HumanImageSMPLXDataset(HumanImageDataset):

    # metric
    ALLOWED_METRICS = {
        'mpjpe', 'pa-mpjpe', 'pve', '3dpck', 'pa-3dpck', '3dauc', 'pa-3dauc',
        '3DRMSE', 'pa-pve'
    }

    def __init__(
        self,
        data_prefix: str,
        pipeline: list,
        dataset_name: str,
        body_model: Optional[Union[dict, None]] = None,
        ann_file: Optional[Union[str, None]] = None,
        convention: Optional[str] = 'human_data',
        cache_data_path: Optional[Union[str, None]] = None,
        test_mode: Optional[bool] = False,
        num_betas: Optional[int] = 10,
        num_expression: Optional[int] = 10,
        face_vertex_ids_path: Optional[str] = None,
        hand_vertex_ids_path: Optional[str] = None,
    ):
        super().__init__(data_prefix, pipeline, dataset_name, body_model,
                         ann_file, convention, cache_data_path, test_mode)
        self.num_betas = num_betas
        self.num_expression = num_expression
        if face_vertex_ids_path is not None:
            if os.path.exists(face_vertex_ids_path):
                self.face_vertex_ids = np.load(face_vertex_ids_path).astype(
                    np.int32)
        if hand_vertex_ids_path is not None:
            if os.path.exists(hand_vertex_ids_path):
                with open(hand_vertex_ids_path, 'rb') as f:
                    vertex_idxs_data = pickle.load(f, encoding='latin1')
                self.left_hand_vertex_ids = vertex_idxs_data['left_hand']
                self.right_hand_vertex_ids = vertex_idxs_data['right_hand']

    def prepare_raw_data(self, idx: int):
        """Get item from self.human_data."""
        info = super().prepare_raw_data(idx)
        if self.cache_reader is not None:
            self.human_data = self.cache_reader.get_item(idx)
            idx = idx % self.cache_reader.slice_size

        if 'smplx' in self.human_data:
            smplx_dict = self.human_data['smplx']
            info['has_smplx'] = 1
        else:
            smplx_dict = {}
            info['has_smplx'] = 0
        if 'global_orient' in smplx_dict:
            info['smplx_global_orient'] = smplx_dict['global_orient'][idx]
            info['has_smplx_global_orient'] = 1
        else:
            info['smplx_global_orient'] = np.zeros((3), dtype=np.float32)
            info['has_smplx_global_orient'] = 0

        if 'body_pose' in smplx_dict:
            info['smplx_body_pose'] = smplx_dict['body_pose'][idx]
            info['has_smplx_body_pose'] = 1
        else:
            info['smplx_body_pose'] = np.zeros((21, 3), dtype=np.float32)
            info['has_smplx_body_pose'] = 0

        if 'right_hand_pose' in smplx_dict:
            info['smplx_right_hand_pose'] = smplx_dict['right_hand_pose'][idx]
            info['has_smplx_right_hand_pose'] = 1
        else:
            info['smplx_right_hand_pose'] = np.zeros((15, 3), dtype=np.float32)
            info['has_smplx_right_hand_pose'] = 0

        if 'left_hand_pose' in smplx_dict:
            info['smplx_left_hand_pose'] = smplx_dict['left_hand_pose'][idx]
            info['has_smplx_left_hand_pose'] = 1
        else:
            info['smplx_left_hand_pose'] = np.zeros((15, 3), dtype=np.float32)
            info['has_smplx_left_hand_pose'] = 0

        if 'jaw_pose' in smplx_dict:
            info['smplx_jaw_pose'] = smplx_dict['jaw_pose'][idx]
            info['has_smplx_jaw_pose'] = 1
        else:
            info['smplx_jaw_pose'] = np.zeros((3), dtype=np.float32)
            info['has_smplx_jaw_pose'] = 0

        if 'betas' in smplx_dict:
            info['smplx_betas'] = smplx_dict['betas'][idx]
            info['has_smplx_betas'] = 1
        else:
            info['smplx_betas'] = np.zeros((self.num_betas), dtype=np.float32)
            info['has_smplx_betas'] = 0

        if 'expression' in smplx_dict:
            info['smplx_expression'] = smplx_dict['expression'][idx]
            info['has_smplx_expression'] = 1
        else:
            info['smplx_expression'] = np.zeros((self.num_expression),
                                                dtype=np.float32)
            info['has_smplx_expression'] = 0

        return info

    def _parse_result(self, res, mode='keypoint', body_part=''):
        if mode == 'vertice':
            # pred
            pred_vertices = res['vertices'] * 1000.
            # gt
            if 'vertices' in self.human_data:  # stirling or ehf
                gt_vertices = self.human_data['vertices'].copy()
                if self.dataset_name == 'EHF':
                    gt_vertices = gt_vertices * 1000.
            else:
                gt_param_dict = self.human_data['smplx'].copy()
                for key, value in gt_param_dict.items():
                    new_value = torch.FloatTensor(value)
                    if ('pose' in key or key
                            == 'global_orient') and value.shape[-2] != 3:
                        new_value = aa_to_rotmat(new_value)
                    gt_param_dict[key] = new_value
                gt_output = self.body_model(**gt_param_dict)
                gt_vertices = gt_output['vertices'].detach().cpu().numpy(
                ) * 1000.

            if body_part == 'right_hand':
                pred_vertices = pred_vertices[:, self.right_hand_vertex_ids]
                gt_vertices = gt_vertices[:, self.right_hand_vertex_ids]
            elif body_part == 'left_hand':
                pred_vertices = pred_vertices[:, self.left_hand_vertex_ids]
                gt_vertices = gt_vertices[:, self.left_hand_vertex_ids]
            elif body_part == 'face':
                pred_vertices = pred_vertices[:, self.face_vertex_ids]
                gt_vertices = gt_vertices[:, self.face_vertex_ids]

            gt_mask = np.ones(gt_vertices.shape[:-1])
            assert len(pred_vertices) == self.num_data

            return pred_vertices, gt_vertices, gt_mask
        elif mode == 'keypoint':
            pred_keypoints3d = res['keypoints']
            assert len(pred_keypoints3d) == self.num_data
            if self.dataset_name in {'pw3d', '3DPW', '3dpw'}:
                betas = []
                body_pose = []
                global_orient = []
                gender = []
                smpl_dict = self.human_data['smpl']
                for idx in range(self.num_data):
                    betas.append(smpl_dict['betas'][idx])
                    body_pose.append(smpl_dict['body_pose'][idx])
                    global_orient.append(smpl_dict['global_orient'][idx])
                    if self.human_data['meta']['gender'][idx] == 'm':
                        gender.append(0)
                    else:
                        gender.append(1)
                betas = torch.FloatTensor(betas)
                body_pose = torch.FloatTensor(body_pose).view(-1, 69)
                global_orient = torch.FloatTensor(global_orient)
                gender = torch.Tensor(gender)
                gt_output = self.body_model(betas=betas,
                                            body_pose=body_pose,
                                            global_orient=global_orient,
                                            gender=gender)
                gt_keypoints3d = gt_output['joints'].detach().cpu().numpy()
                gt_keypoints3d_mask = np.ones(
                    (len(pred_keypoints3d), gt_keypoints3d.shape[1]))
            elif self.dataset_name == 'EHF':
                gt_vertices = self.human_data['vertices'].copy()
                if body_part == 'J14':
                    gt_keypoints3d = torch.einsum('bik,ji->bjk', [
                        torch.from_numpy(gt_vertices).float(),
                        self.body_model.joints_regressor
                    ]).numpy()
                    pred_vertices = res['vertices']
                    pred_keypoints3d = torch.einsum('bik,ji->bjk', [
                        torch.from_numpy(pred_vertices).float(),
                        self.body_model.joints_regressor
                    ]).numpy()
                    gt_keypoints3d_mask = np.ones(
                        (len(pred_keypoints3d), gt_keypoints3d.shape[1]))
                else:
                    gt_keypoints3d = torch.einsum('bik,ji->bjk', [
                        torch.from_numpy(gt_vertices).float(),
                        self.body_model.J_regressor
                    ]).numpy()
                    extra_joints_idxs = np.array([
                        9120, 9929, 9448, 616, 6, 5770, 5780, 8846, 8463, 8474,
                        8635, 5361, 4933, 5058, 5169, 5286, 8079, 7669, 7794,
                        7905, 8022
                    ])
                    gt_keypoints3d = np.concatenate(
                        (gt_keypoints3d, gt_vertices[:, extra_joints_idxs]),
                        axis=1)
                    pred_vertices = res['vertices']
                    pred_keypoints3d = torch.einsum('bik,ji->bjk', [
                        torch.from_numpy(pred_vertices).float(),
                        self.body_model.J_regressor
                    ]).numpy()
                    pred_keypoints3d = np.concatenate(
                        (pred_keypoints3d, pred_vertices[:,
                                                         extra_joints_idxs]),
                        axis=1)

                    idxs = list(range(0, gt_keypoints3d.shape[1]))
                    if body_part == 'right_hand':
                        idxs = get_keypoint_idxs_by_part(
                            'right_hand', self.convention)
                        idxs.append(
                            get_keypoint_idx('right_wrist', self.convention))
                    elif body_part == 'left_hand':
                        idxs = get_keypoint_idxs_by_part(
                            'left_hand', self.convention)
                        idxs.append(
                            get_keypoint_idx('left_wrist', self.convention))
                    elif body_part == 'body':
                        idxs = get_keypoint_idxs_by_part(
                            'body', self.convention)
                    gt_keypoints3d = gt_keypoints3d[:, idxs]
                    pred_keypoints3d = pred_keypoints3d[:, idxs]
                    gt_keypoints3d_mask = np.ones(
                        (len(pred_keypoints3d), gt_keypoints3d.shape[1]))
            else:
                gt_keypoints3d = self.human_data['keypoints3d'][:, :, :3]
                gt_keypoints3d_mask = np.ones(
                    (len(pred_keypoints3d), gt_keypoints3d.shape[1]))

            if gt_keypoints3d.shape[1] == 17:
                # SMPLX_to_J14
                assert pred_keypoints3d.shape[1] == 14
                H36M_TO_J17 = [
                    6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10, 0, 7, 9
                ]
                H36M_TO_J14 = H36M_TO_J17[:14]
                joint_mapper = H36M_TO_J14
                gt_keypoints3d = gt_keypoints3d[:, joint_mapper, :]
                pred_pelvis = pred_keypoints3d[:,
                                               [2, 3], :].mean(axis=1,
                                                               keepdims=True)
                gt_pelvis = gt_keypoints3d[:, [2, 3], :].mean(axis=1,
                                                              keepdims=True)
                gt_keypoints3d_mask = gt_keypoints3d_mask[:, joint_mapper]
                pred_keypoints3d = pred_keypoints3d - pred_pelvis
                gt_keypoints3d = gt_keypoints3d - gt_pelvis
            elif gt_keypoints3d.shape[1] == 14:
                assert pred_keypoints3d.shape[1] == 14
                pred_pelvis = pred_keypoints3d[:,
                                               [2, 3], :].mean(axis=1,
                                                               keepdims=True)
                gt_pelvis = gt_keypoints3d[:, [2, 3], :].mean(axis=1,
                                                              keepdims=True)
                pred_keypoints3d = pred_keypoints3d - pred_pelvis
                gt_keypoints3d = gt_keypoints3d - gt_pelvis
            elif gt_keypoints3d.shape[1] == 21:
                pred_pelvis = pred_keypoints3d[:, :1, :]
                gt_pelvis = gt_keypoints3d[:, :1, :]
                pred_keypoints3d = pred_keypoints3d - pred_pelvis
                gt_keypoints3d = gt_keypoints3d - gt_pelvis
            else:
                pass

            pred_keypoints3d = pred_keypoints3d * 1000
            if self.dataset_name != 'stirling':
                gt_keypoints3d = gt_keypoints3d * 1000
            gt_keypoints3d_mask = gt_keypoints3d_mask > 0

            return pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask

    def _report_3d_rmse(self, res_file):
        """compute the 3DRMSE between a predicted 3D face shape and the 3D
        ground truth scan."""
        pred_vertices, gt_vertices, _ = self._parse_result(res_file,
                                                           mode='vertice')
        pred_keypoints3d, gt_keypoints3d, _ = self._parse_result(
            res_file, mode='keypoint')
        errors = []
        for pred_vertice, gt_vertice, pred_points, gt_points in zip(
                pred_vertices, gt_vertices, pred_keypoints3d, gt_keypoints3d):
            error = fg_vertices_to_mesh_distance(gt_vertice, gt_points,
                                                 pred_vertice,
                                                 self.body_model.faces,
                                                 pred_points)
            errors.append(error)

        error = np.array(errors).mean()
        name_value_tuples = [('3DRMSE', error)]
        return name_value_tuples

    def evaluate(self,
                 outputs: list,
                 res_folder: str,
                 metric: Optional[Union[str, List[str]]] = 'pa-mpjpe',
                 **kwargs: dict):
        """Evaluate 3D keypoint results.

        Args:
            outputs (list): results from model inference.
            res_folder (str): path to store results.
            metric (Optional[Union[str, List(str)]]):
                the type of metric. Default: 'pa-mpjpe'
            kwargs (dict): other arguments.
        Returns:
            dict:
                A dict of all evaluation results.
        """
        metrics = metric if isinstance(metric, list) else [metric]
        for metric in metrics:
            if metric not in self.ALLOWED_METRICS:
                raise KeyError(f'metric {metric} is not supported')

        # for keeping correctness during multi-gpu test, we sort all results
        res_dict = {}
        for out in outputs:
            target_id = out['image_idx']
            batch_size = len(out['keypoints_3d'])
            for i in range(batch_size):
                res_dict[int(target_id[i])] = dict(
                    keypoints=out['keypoints_3d'][i],
                    vertices=out['vertices'][i],
                )
        keypoints, vertices = [], []
        for i in range(self.num_data):
            keypoints.append(res_dict[i]['keypoints'])
            vertices.append(res_dict[i]['vertices'])
        keypoints = np.stack(keypoints)
        vertices = np.stack(vertices)
        res = dict(keypoints=keypoints, vertices=vertices)
        name_value_tuples = []
        for index, _metric in enumerate(metrics):
            if 'body_part' in kwargs:
                body_parts = kwargs['body_part'][index]
                for body_part in body_parts:
                    if _metric == 'pa-mpjpe':
                        _nv_tuples = self._report_mpjpe(res,
                                                        metric='pa-mpjpe',
                                                        body_part=body_part)
                    elif _metric == 'pa-pve':
                        _nv_tuples = self._report_pve(res,
                                                      metric='pa-pve',
                                                      body_part=body_part)
                    else:
                        raise NotImplementedError
                    name_value_tuples.extend(_nv_tuples)
            else:
                if _metric == 'mpjpe':
                    _nv_tuples = self._report_mpjpe(res)
                elif _metric == 'pa-mpjpe':
                    _nv_tuples = self._report_mpjpe(res, metric='pa-mpjpe')
                elif _metric == '3dpck':
                    _nv_tuples = self._report_3d_pck(res)
                elif _metric == 'pa-3dpck':
                    _nv_tuples = self._report_3d_pck(res, metric='pa-3dpck')
                elif _metric == '3dauc':
                    _nv_tuples = self._report_3d_auc(res)
                elif _metric == 'pa-3dauc':
                    _nv_tuples = self._report_3d_auc(res, metric='pa-3dauc')
                elif _metric == 'pve':
                    _nv_tuples = self._report_pve(res)
                elif _metric == 'pa-pve':
                    _nv_tuples = self._report_pve(res, metric='pa-pve')
                elif _metric == '3DRMSE':
                    _nv_tuples = self._report_3d_rmse(res)
                else:
                    raise NotImplementedError
                name_value_tuples.extend(_nv_tuples)
        name_value = OrderedDict(name_value_tuples)
        return name_value