File size: 52,382 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
import logging
import pickle
from enum import Enum
from math import ceil
from typing import Any, List, Optional, TypeVar, Union, overload

import numpy as np
import torch
from mmcv.utils import print_log

from detrsmpl.utils.path_utils import (
    Existence,
    check_path_existence,
    check_path_suffix,
)

# In T = TypeVar('T'), T can be anything.
# See definition of typing.TypeVar for details.
_T1 = TypeVar('_T1')
_KT = TypeVar('_KT')
_VT = TypeVar('_VT')
_HumanData = TypeVar('_HumanData')
_CPU_DEVICE = torch.device('cpu')

_HumanData_SUPPORTED_KEYS = {
    'image_path': {
        'type': list,
    },
    'image_id': {
        'type': list,
    },
    'bbox_xywh': {
        'type': np.ndarray,
        'shape': (-1, 5),
        'dim': 0
    },
    'config': {
        'type': str,
        'dim': None
    },
    'keypoints2d': {
        'type': np.ndarray,
        'shape': (-1, -1, 3),
        'dim': 0
    },
    'keypoints3d': {
        'type': np.ndarray,
        'shape': (-1, -1, 4),
        'dim': 0
    },
    'smpl': {
        'type': dict,
        'slice_key': 'betas',
        'dim': 0
    },
    'smplh': {
        'type': dict,
        'slice_key': 'betas',
        'dim': 0
    },
    'smplx': {
        'type': dict,
        'slice_key': 'betas',
        'dim': 0
    },
    'meta': {
        'type': dict,
    },
    'keypoints2d_mask': {
        'type': np.ndarray,
        'shape': (-1, ),
        'dim': None
    },
    'keypoints2d_convention': {
        'type': str,
        'dim': None
    },
    'keypoints3d_mask': {
        'type': np.ndarray,
        'shape': (-1, ),
        'dim': None
    },
    'keypoints3d_convention': {
        'type': str,
        'dim': None
    },
    'vertices': {
        'type': np.ndarray,
        'shape': (-1, ),
        'dim': None
    },
    'focal_length': {
        'type': np.ndarray,
        'shape': (-1, ),
        'dim': 0
    },
    'principal_point': {
        'type': np.ndarray,
        'shape': (-1, ),
        'dim': 0
    },
    'misc': {
        'type': dict,
    },
}


class _KeyCheck(Enum):
    PASS = 0
    WARN = 1
    ERROR = 2


class HumanData(dict):
    logger = None
    SUPPORTED_KEYS = _HumanData_SUPPORTED_KEYS
    WARNED_KEYS = []

    def __new__(cls: _HumanData, *args: Any, **kwargs: Any) -> _HumanData:
        """New an instance of HumanData.

        Args:
            cls (HumanData): HumanData class.

        Returns:
            HumanData: An instance of HumanData.
        """
        ret_human_data = super().__new__(cls, args, kwargs)
        setattr(ret_human_data, '__data_len__', -1)
        setattr(ret_human_data, '__key_strict__', False)
        setattr(ret_human_data, '__keypoints_compressed__', False)
        return ret_human_data

    @classmethod
    def set_logger(cls, logger: Union[logging.Logger, str, None] = None):
        """Set logger of HumanData class.

        Args:
            logger (logging.Logger | str | None, optional):
                The way to print summary.
                See `mmcv.utils.print_log()` for details.
                Defaults to None.
        """
        cls.logger = logger

    @classmethod
    def fromfile(cls, npz_path: str) -> _HumanData:
        """Construct a HumanData instance from an npz file.

        Args:
            npz_path (str):
                Path to a dumped npz file.

        Returns:
            HumanData:
                A HumanData instance load from file.
        """
        ret_human_data = cls()
        ret_human_data.load(npz_path)
        return ret_human_data

    @classmethod
    def new(cls,
            source_dict: dict = None,
            key_strict: bool = False) -> _HumanData:
        """Construct a HumanData instance from a dict.

        Args:
            source_dict (dict, optional):
                A dict with items in HumanData fashion.
                Defaults to None.
            key_strict (bool, optional):
                Whether to raise error when setting unsupported keys.
                Defaults to False.

        Returns:
            HumanData:
                A HumanData instance.
        """
        if source_dict is None:
            ret_human_data = cls()
        else:
            ret_human_data = cls(source_dict)
        ret_human_data.set_key_strict(key_strict)
        return ret_human_data

    def get_key_strict(self) -> bool:
        """Get value of attribute key_strict.

        Returns:
            bool:
                Whether to raise error when setting unsupported keys.
        """
        return self.__key_strict__

    def set_key_strict(self, value: bool):
        """Set value of attribute key_strict.

        Args:
            value (bool, optional):
                Whether to raise error when setting unsupported keys.
                Defaults to True.
        """
        former__key_strict__ = self.__key_strict__
        self.__key_strict__ = value
        if former__key_strict__ is False and \
                value is True:
            self.pop_unsupported_items()

    def check_keypoints_compressed(self) -> bool:
        """Check whether the keypoints are compressed.

        Returns:
            bool:
                Whether the keypoints are compressed.
        """
        return self.__keypoints_compressed__

    def load(self, npz_path: str):
        """Load data from npz_path and update them to self.

        Args:
            npz_path (str):
                Path to a dumped npz file.
        """
        supported_keys = self.__class__.SUPPORTED_KEYS
        with np.load(npz_path, allow_pickle=True) as npz_file:
            tmp_data_dict = dict(npz_file)
            for key, value in list(tmp_data_dict.items()):
                if isinstance(value, np.ndarray) and\
                        len(value.shape) == 0:
                    # value is not an ndarray before dump
                    value = value.item()
                elif key in supported_keys and\
                        type(value) != supported_keys[key]['type']:
                    value = supported_keys[key]['type'](value)
                if value is None:
                    tmp_data_dict.pop(key)
                elif key == '__key_strict__' or \
                        key == '__data_len__' or\
                        key == '__keypoints_compressed__':
                    self.__setattr__(key, value)
                    # pop the attributes to keep dict clean
                    tmp_data_dict.pop(key)
                elif key == 'bbox_xywh' and value.shape[1] == 4:
                    value = np.hstack([value, np.ones([value.shape[0], 1])])
                    tmp_data_dict[key] = value
                else:
                    tmp_data_dict[key] = value
            self.update(tmp_data_dict)
            self.__set_default_values__()

    def dump(self, npz_path: str, overwrite: bool = True):
        """Dump keys and items to an npz file.

        Args:
            npz_path (str):
                Path to a dumped npz file.
            overwrite (bool, optional):
                Whether to overwrite if there is already a file.
                Defaults to True.

        Raises:
            ValueError:
                npz_path does not end with '.npz'.
            FileExistsError:
                When overwrite is False and file exists.
        """
        if not check_path_suffix(npz_path, ['.npz']):
            raise ValueError('Not an npz file.')
        if not overwrite:
            if check_path_existence(npz_path, 'file') == Existence.FileExist:
                raise FileExistsError
        dict_to_dump = {
            '__key_strict__': self.__key_strict__,
            '__data_len__': self.__data_len__,
            '__keypoints_compressed__': self.__keypoints_compressed__,
        }
        dict_to_dump.update(self)
        np.savez_compressed(npz_path, **dict_to_dump)

    def get_sliced_cache(self, slice_size=10) -> List:
        """Slice the whole HumanData into pieces for HumanDataCacheWriter.

        Args:
            slice_size (int, optional):
                The length of each unit in HumanData cache.
                Defaults to 10.

        Returns:
            List:
                Two dicts for HumanDataCacheWriter.
                Init HumanDataCacheWriter by HumanDataCacheWriter(**Returns[0])
                and set data by
                human_data_cache_writer.update_sliced_dict(Returns[1]).
        """
        keypoints_info = {}
        non_sliced_data = {}
        sliced_data = {}
        slice_num = ceil(self.__data_len__ / slice_size)
        for slice_index in range(slice_num):
            sliced_data[str(slice_index)] = {}
        dim_dict = self.__get_slice_dim__()
        for key, dim in dim_dict.items():
            # no dim to slice
            if dim is None:
                if key.startswith('keypoints') and\
                        (key.endswith('_mask') or
                         key.endswith('_convention')):
                    keypoints_info[key] = self[key]
                else:
                    non_sliced_data[key] = self[key]
            elif isinstance(dim, dict):
                value_dict = self.get_raw_value(key)
                non_sliced_sub_dict = {}
                for sub_key in value_dict.keys():
                    sub_value = value_dict[sub_key]
                    if dim[sub_key] is None:
                        non_sliced_sub_dict[sub_key] = sub_value
                    else:
                        sub_dim = dim[sub_key]
                        for slice_index in range(slice_num):
                            slice_start = slice_index * slice_size
                            slice_end = min((slice_index + 1) * slice_size,
                                            self.__data_len__)
                            slice_range = slice(slice_start, slice_end)
                            sliced_sub_value = \
                                HumanData.__get_sliced_result__(
                                    sub_value, sub_dim, slice_range
                                )
                            if key not in sliced_data[str(slice_index)]:
                                sliced_data[str(slice_index)][key] = {}
                            sliced_data[str(slice_index)][key][sub_key] = \
                                sliced_sub_value
                if len(non_sliced_sub_dict) > 0:
                    non_sliced_data[key] = non_sliced_sub_dict
            else:
                value = self.get_raw_value(key)
                # slice as ndarray
                if isinstance(value, np.ndarray):
                    slice_list = [
                        slice(None),
                    ] * len(value.shape)
                    for slice_index in range(slice_num):
                        slice_start = slice_index * slice_size
                        slice_end = min((slice_index + 1) * slice_size,
                                        self.__data_len__)
                        slice_list[dim] = slice(slice_start, slice_end)
                        sliced_value = value[tuple(slice_list)]
                        sliced_data[str(slice_index)][key] = sliced_value
                # slice as list/tuple
                else:
                    for slice_index in range(slice_num):
                        slice_start = slice_index * slice_size
                        slice_end = min((slice_index + 1) * slice_size,
                                        self.__data_len__)
                        sliced_value = value[slice(slice_start, slice_end)]
                        sliced_data[str(slice_index)][key] = sliced_value
        writer_args_dict = {
            'slice_size': slice_size,
            'keypoints_info': keypoints_info,
            'data_len': self.data_len,
            'non_sliced_data': non_sliced_data,
            'key_strict': self.get_key_strict()
        }
        return writer_args_dict, sliced_data

    def to(self,
           device: Optional[Union[torch.device, str]] = _CPU_DEVICE,
           dtype: Optional[torch.dtype] = None,
           non_blocking: Optional[bool] = False,
           copy: Optional[bool] = False,
           memory_format: Optional[torch.memory_format] = None) -> dict:
        """Convert values in numpy.ndarray type to torch.Tensor, and move
        Tensors to the target device. All keys will exist in the returned dict.

        Args:
            device (Union[torch.device, str], optional):
                A specified device. Defaults to CPU_DEVICE.
            dtype (torch.dtype, optional):
                The data type of the expected torch.Tensor.
                If dtype is None, it is decided according to numpy.ndarry.
                Defaults to None.
            non_blocking (bool, optional):
                When non_blocking, tries to convert asynchronously with
                respect to the host if possible, e.g.,
                converting a CPU Tensor with pinned memory to a CUDA Tensor.
                Defaults to False.
            copy (bool, optional):
                When copy is set, a new Tensor is created even when
                the Tensor already matches the desired conversion.
                No matter what value copy is, Tensor constructed from numpy
                will not share the same memory with the source numpy.ndarray.
                Defaults to False.
            memory_format (torch.memory_format, optional):
                The desired memory format of returned Tensor.
                Not supported by pytorch-cpu.
                Defaults to None.

        Returns:
            dict:
                A dict with all numpy.ndarray values converted into
                torch.Tensor and all Tensors moved to the target device.
        """
        ret_dict = {}
        for key in self.keys():
            raw_value = self.get_raw_value(key)
            tensor_value = None
            if isinstance(raw_value, np.ndarray):
                tensor_value = torch.from_numpy(raw_value).clone()
            elif isinstance(raw_value, torch.Tensor):
                tensor_value = raw_value
            if tensor_value is None:
                ret_dict[key] = raw_value
            else:
                if memory_format is None:
                    ret_dict[key] = \
                        tensor_value.to(device, dtype,
                                        non_blocking, copy)
                else:
                    ret_dict[key] = \
                        tensor_value.to(device, dtype,
                                        non_blocking, copy,
                                        memory_format=memory_format)
        return ret_dict

    def __getitem__(self, key: _KT) -> _VT:
        """Get value defined by HumanData. This function will be called by
        self[key]. In keypoints_compressed mode, if the key contains
        'keypoints', an array with zero-padding at absent keypoint will be
        returned. Call self.get_raw_value(k) to get value without padding.

        Args:
            key (_KT):
                Key in HumanData.

        Returns:
            _VT:
                Value to the key.
        """
        value = super().__getitem__(key)
        if self.__keypoints_compressed__:
            mask_key = f'{key}_mask'
            if key in self and \
                    isinstance(value, np.ndarray) and \
                    'keypoints' in key and \
                    mask_key in self:
                mask_array = np.asarray(super().__getitem__(mask_key))
                value = \
                    self.__class__.__add_zero_pad__(value, mask_array)
        return value

    def get_raw_value(self, key: _KT) -> _VT:
        """Get raw value from the dict. It acts the same as
        dict.__getitem__(k).

        Args:
            key (_KT):
                Key in dict.

        Returns:
            _VT:
                Value to the key.
        """
        value = super().__getitem__(key)
        return value

    def get_value_in_shape(self,
                           key: _KT,
                           shape: Union[list, tuple],
                           padding_constant: int = 0) -> np.ndarray:
        """Get value in a specific shape. For each dim, if the required shape
        is smaller than current shape, ndarray will be sliced. Otherwise, it
        will be padded with padding_constant at the end.

        Args:
            key (_KT):
                Key in dict. The value of this key must be
                an instance of numpy.ndarray.
            shape (Union[list, tuple]):
                Shape of the returned array. Its length
                must be equal to value.ndim. Set -1 for
                a dimension if you do not want to edit it.
            padding_constant (int, optional):
                The value to set the padded values for each axis.
                Defaults to 0.

        Raises:
            ValueError:
                A value in shape is neither positive integer nor -1.

        Returns:
            np.ndarray:
                An array in required shape.
        """
        value = self.get_raw_value(key)
        assert isinstance(value, np.ndarray)
        assert value.ndim == len(shape)
        pad_width_list = []
        slice_list = []
        for dim_index in range(len(shape)):
            if shape[dim_index] == -1:
                # no pad or slice
                pad_width_list.append((0, 0))
                slice_list.append(slice(None))
            elif shape[dim_index] > 0:
                # valid shape value
                wid = shape[dim_index] - value.shape[dim_index]
                if wid > 0:
                    pad_width_list.append((0, wid))
                else:
                    pad_width_list.append((0, 0))
                slice_list.append(slice(0, shape[dim_index]))
            else:
                # invalid
                raise ValueError
        pad_value = np.pad(value,
                           pad_width=pad_width_list,
                           mode='constant',
                           constant_values=padding_constant)
        return pad_value[tuple(slice_list)]

    @overload
    def get_slice(self, stop: int):
        """Slice [0, stop, 1] of all sliceable values."""
        ...

    @overload
    def get_slice(self, start: int, stop: int):
        """Slice [start, stop, 1] of all sliceable values."""
        ...

    @overload
    def get_slice(self, start: int, stop: int, step: int):
        """Slice [start, stop, step] of all sliceable values."""
        ...

    def get_slice(self,
                  arg_0: int,
                  arg_1: Union[int, Any] = None,
                  step: int = 1) -> _HumanData:
        """Slice all sliceable values along major_dim dimension.

        Args:
            arg_0 (int):
                When arg_1 is None, arg_0 is stop and start=0.
                When arg_1 is not None, arg_0 is start.
            arg_1 (Union[int, Any], optional):
                None or where to stop.
                Defaults to None.
            step (int, optional):
                Length of step. Defaults to 1.

        Returns:
            HumanData:
                A new HumanData instance with sliced values.
        """
        ret_human_data = \
            HumanData.new(key_strict=self.get_key_strict())
        if arg_1 is None:
            start = 0
            stop = arg_0
        else:
            start = arg_0
            stop = arg_1
        slice_index = slice(start, stop, step)
        dim_dict = self.__get_slice_dim__()
        for key, dim in dim_dict.items():
            # keys not expected be sliced
            if dim is None:
                ret_human_data[key] = self[key]
            elif isinstance(dim, dict):
                value_dict = self.get_raw_value(key)
                sliced_dict = {}
                for sub_key in value_dict.keys():
                    sub_value = value_dict[sub_key]
                    if dim[sub_key] is None:
                        sliced_dict[sub_key] = sub_value
                    else:
                        sub_dim = dim[sub_key]
                        sliced_sub_value = \
                            HumanData.__get_sliced_result__(
                                sub_value, sub_dim, slice_index)
                        sliced_dict[sub_key] = sliced_sub_value
                ret_human_data[key] = sliced_dict
            else:
                value = self[key]
                sliced_value = \
                    HumanData.__get_sliced_result__(
                        value, dim, slice_index)
                ret_human_data[key] = sliced_value
        # check keypoints compressed
        if self.check_keypoints_compressed():
            ret_human_data.compress_keypoints_by_mask()
        return ret_human_data

    def __get_slice_dim__(self) -> dict:
        """For each key in this HumanData, get the dimension for slicing. 0 for
        default, if no other value specified.

        Returns:
            dict:
                Keys are self.keys().
                Values indicate where to slice.
                None for not expected to be sliced or
                failed.
        """
        supported_keys = self.__class__.SUPPORTED_KEYS
        ret_dict = {}
        for key in self.keys():
            # keys not expected be sliced
            if key in supported_keys and \
                    'dim' in supported_keys[key] and \
                    supported_keys[key]['dim'] is None:
                ret_dict[key] = None
            else:
                value = self[key]
                if isinstance(value, dict) and len(value) > 0:
                    ret_dict[key] = {}
                    for sub_key in value.keys():
                        try:
                            sub_value_len = len(value[sub_key])
                            if sub_value_len != self.__data_len__:
                                ret_dict[key][sub_key] = None
                            elif 'dim' in value:
                                ret_dict[key][sub_key] = value['dim']
                            else:
                                ret_dict[key][sub_key] = 0
                        except TypeError:
                            ret_dict[key][sub_key] = None
                    continue
                # instance cannot be sliced without len method
                try:
                    value_len = len(value)
                except TypeError:
                    ret_dict[key] = None
                    continue
                # slice on dim 0 by default
                slice_dim = 0
                if key in supported_keys and \
                        'dim' in supported_keys[key]:
                    slice_dim = \
                        supported_keys[key]['dim']
                data_len = value_len if slice_dim == 0 \
                    else value.shape[slice_dim]
                # dim not for slice
                if data_len != self.__data_len__:
                    ret_dict[key] = None
                    continue
                else:
                    ret_dict[key] = slice_dim
        return ret_dict

    def __setitem__(self, key: _KT, val: _VT) -> None:
        """Set self[key] to value. Only be called when using
        human_data[key] = val. Methods like update won't call __setitem__.
        In keypoints_compressed mode, if the key contains 'keypoints',
        and f'{key}_mask' is in self.keys(), invalid zeros
        will be removed before setting value.

        Args:
            key (_KT):
                Key in HumanData.
                Better be an element in HumanData.SUPPORTED_KEYS.
                If not, an Error will be raised in key_strict mode.
            val (_VT):
                Value to the key.

        Raises:
            KeyError:
                self.get_key_strict() is True and
                key cannot be found in
                HumanData.SUPPORTED_KEYS.
            ValueError:
                Value is supported but doesn't match definition.
            ValueError:
                self.check_keypoints_compressed() is True and
                mask of a keypoint item is missing.
        """
        self.__check_key__(key)
        self.__check_value__(key, val)
        # if it can be compressed by mask
        if self.__keypoints_compressed__:
            class_logger = self.__class__.logger
            if 'keypoints' in key and \
                    '_mask' in key:
                msg = 'Mask cannot be modified ' +\
                      'in keypoints_compressed mode.'
                print_log(msg=msg, logger=class_logger, level=logging.WARN)
                return
            elif isinstance(val, np.ndarray) and \
                    'keypoints' in key and \
                    '_mask' not in key:
                mask_key = f'{key}_mask'
                if mask_key in self:
                    mask_array = np.asarray(super().__getitem__(mask_key))
                    val = \
                        self.__class__.__remove_zero_pad__(val, mask_array)
                else:
                    msg = f'Mask for {key} has not been set.' +\
                        f' Please set {mask_key} before compression.'
                    print_log(msg=msg,
                              logger=class_logger,
                              level=logging.ERROR)
                    raise ValueError
        dict.__setitem__(self, key, val)

    def set_raw_value(self, key: _KT, val: _VT) -> None:
        """Set the raw value of self[key] to val after key check. It acts the
        same as dict.__setitem__(self, key, val) if the key satisfied
        constraints.

        Args:
            key (_KT):
                Key in dict.
            val (_VT):
                Value to the key.

        Raises:
            KeyError:
                self.get_key_strict() is True and
                key cannot be found in
                HumanData.SUPPORTED_KEYS.
            ValueError:
                Value is supported but doesn't match definition.
        """
        self.__check_key__(key)
        self.__check_value__(key, val)
        dict.__setitem__(self, key, val)

    def pop_unsupported_items(self) -> None:
        """Find every item with a key not in HumanData.SUPPORTED_KEYS, and pop
        it to save memory."""
        for key in list(self.keys()):
            if key not in self.__class__.SUPPORTED_KEYS:
                self.pop(key)

    def __check_key__(self, key: Any) -> _KeyCheck:
        """Check whether the key matches definition in
        HumanData.SUPPORTED_KEYS.

        Args:
            key (Any):
                Key in HumanData.

        Returns:
            _KeyCheck:
                PASS, WARN or ERROR.

        Raises:
            KeyError:
                self.get_key_strict() is True and
                key cannot be found in
                HumanData.SUPPORTED_KEYS.
        """
        ret_key_check = _KeyCheck.PASS
        if self.get_key_strict():
            if key not in self.__class__.SUPPORTED_KEYS:
                ret_key_check = _KeyCheck.ERROR
        else:
            if key not in self.__class__.SUPPORTED_KEYS and \
                    key not in self.__class__.WARNED_KEYS:
                # log warning message at the first time
                ret_key_check = _KeyCheck.WARN
                self.__class__.WARNED_KEYS.append(key)
        if ret_key_check == _KeyCheck.ERROR:
            raise KeyError(self.__class__.__get_key_error_msg__(key))
        elif ret_key_check == _KeyCheck.WARN:
            class_logger = self.__class__.logger
            if class_logger == 'silent':
                pass
            else:
                print_log(msg=self.__class__.__get_key_warn_msg__(key),
                          logger=class_logger,
                          level=logging.WARN)
        return ret_key_check

    def __check_value__(self, key: Any, val: Any) -> bool:
        """Check whether the value matches definition in
        HumanData.SUPPORTED_KEYS.

        Args:
            key (Any):
                Key in HumanData.
            val (Any):
                Value to the key.

        Returns:
            bool:
                True for matched, ortherwise False.

        Raises:
            ValueError:
                Value is supported but doesn't match definition.
        """
        ret_bool = self.__check_value_type__(key, val) and\
            self.__check_value_shape__(key, val) and\
            self.__check_value_len__(key, val)
        if not ret_bool:
            raise ValueError(self.__class__.__get_value_error_msg__())
        return ret_bool

    def __check_value_type__(self, key: Any, val: Any) -> bool:
        """Check whether the type of val matches definition in
        HumanData.SUPPORTED_KEYS.

        Args:
            key (Any):
                Key in HumanData.
            val (Any):
                Value to the key.

        Returns:
            bool:
                If type doesn't match, return False.
                Else return True.
        """
        ret_bool = True
        supported_keys = self.__class__.SUPPORTED_KEYS
        # check definition
        if key in supported_keys:
            # check type
            if type(val) != supported_keys[key]['type']:
                ret_bool = False
        if not ret_bool:
            expected_type = supported_keys[key]['type']
            err_msg = 'Type check Failed:\n'
            err_msg += f'key={str(key)}\n'
            err_msg += f'type(val)={type(val)}\n'
            err_msg += f'expected type={expected_type}\n'
            print_log(msg=err_msg,
                      logger=self.__class__.logger,
                      level=logging.ERROR)
        return ret_bool

    def __check_value_shape__(self, key: Any, val: Any) -> bool:
        """Check whether the shape of val matches definition in
        HumanData.SUPPORTED_KEYS.

        Args:
            key (Any):
                Key in HumanData.
            val (Any):
                Value to the key.

        Returns:
            bool:
                If expected shape is defined and doesn't match,
                return False.
                Else return True.
        """
        ret_bool = True
        supported_keys = self.__class__.SUPPORTED_KEYS
        # check definition
        if key in supported_keys:
            # check shape
            if 'shape' in supported_keys[key]:
                val_shape = val.shape
                for shape_ind in range(len(supported_keys[key]['shape'])):
                    # length not match
                    if shape_ind >= len(val_shape):
                        ret_bool = False
                        break
                    expect_val = supported_keys[key]['shape'][shape_ind]
                    # value not match
                    if expect_val > 0 and \
                            expect_val != val_shape[shape_ind]:
                        ret_bool = False
                        break
        if not ret_bool:
            expected_shape = str(supported_keys[key]['shape'])
            expected_shape = expected_shape.replace('-1', 'Any')
            err_msg = 'Shape check Failed:\n'
            err_msg += f'key={str(key)}\n'
            err_msg += f'val.shape={val_shape}\n'
            err_msg += f'expected shape={expected_shape}\n'
            print_log(msg=err_msg,
                      logger=self.__class__.logger,
                      level=logging.ERROR)
        return ret_bool

    @property
    def data_len(self) -> int:
        """Get the temporal length of this HumanData instance.

        Returns:
            int:
                Number of frames related to this instance.
        """
        return self.__data_len__

    @data_len.setter
    def data_len(self, value: int):
        """Set the temporal length of this HumanData instance.

        Args:
            value (int):
                Number of frames related to this instance.
        """
        self.__data_len__ = value

    def __check_value_len__(self, key: Any, val: Any) -> bool:
        """Check whether the temporal length of val matches other values.

        Args:
            key (Any):
                Key in HumanData.
            val (Any):
                Value to the key.

        Returns:
            bool:
                If temporal dim is defined and temporal length doesn't match,
                return False.
                Else return True.
        """
        ret_bool = True
        supported_keys = self.__class__.SUPPORTED_KEYS
        # check definition
        if key in supported_keys:
            # check temporal length
            if 'dim' in supported_keys[key] and \
                    supported_keys[key]['dim'] is not None:
                val_slice_dim = supported_keys[key]['dim']
                if supported_keys[key]['type'] == dict:
                    slice_key = supported_keys[key]['slice_key']
                    val_data_len = val[slice_key].shape[val_slice_dim]
                else:
                    val_data_len = val.shape[val_slice_dim]
                if self.data_len < 0:
                    # no data_len yet, assign a new one
                    self.data_len = val_data_len
                else:
                    # check if val_data_len matches recorded data_len
                    if self.data_len != val_data_len:
                        ret_bool = False
        if not ret_bool:
            err_msg = 'Temporal check Failed:\n'
            err_msg += f'key={str(key)}\n'
            err_msg += f'val\'s data_len={val_data_len}\n'
            err_msg += f'expected data_len={self.data_len}\n'
            print_log(msg=err_msg,
                      logger=self.__class__.logger,
                      level=logging.ERROR)
        return ret_bool

    def generate_mask_from_confidence(self, keys=None) -> None:
        """Generate mask from keypoints' confidence. Keypoints that have zero
        confidence in all occurrences will have a zero mask. Note that the last
        value of the keypoint is assumed to be confidence.

        Args:
            keys: None, str, or list of str.
                None: all keys with `keypoint` in it will have mask
                    generated from their confidence.
                str: key of the keypoint, the mask has name f'{key}_name'
                list of str: a list of keys of the keypoints.
                    Generate mask for multiple keypoints.
                Defaults to None.

        Returns:
            None

        Raises:
            KeyError:
                A key is not not found
        """
        if keys is None:
            keys = []
            for key in self.keys():
                val = self.get_raw_value(key)
                if isinstance(val, np.ndarray) and \
                        'keypoints' in key and \
                        '_mask' not in key:
                    keys.append(key)
        elif isinstance(keys, str):
            keys = [keys]
        elif isinstance(keys, list):
            for key in keys:
                assert isinstance(key, str)
        else:
            raise TypeError(f'`Keys` must be None, str, or list of str, '
                            f'got {type(keys)}.')

        update_dict = {}
        for kpt_key in keys:
            kpt_array = self.get_raw_value(kpt_key)
            num_joints = kpt_array.shape[-2]
            # if all conf of a joint are zero, this joint is masked
            joint_conf = kpt_array[..., -1].reshape(-1, num_joints)
            mask_array = (joint_conf > 0).astype(np.uint8).max(axis=0)
            assert len(mask_array) == num_joints
            # generate mask
            update_dict[f'{kpt_key}_mask'] = mask_array
        self.update(update_dict)

    def compress_keypoints_by_mask(self) -> None:
        """If a key contains 'keypoints', and f'{key}_mask' is in self.keys(),
        invalid zeros will be removed and f'{key}_mask' will be locked.

        Raises:
            KeyError:
                A key contains 'keypoints' has been found
                but its corresponding mask is missing.
        """
        assert self.__keypoints_compressed__ is False
        key_pairs = []
        for key in self.keys():
            mask_key = f'{key}_mask'
            val = self.get_raw_value(key)
            if isinstance(val, np.ndarray) and \
                    'keypoints' in key and \
                    '_mask' not in key and 'has' not in key:
                if mask_key in self:
                    key_pairs.append([key, mask_key])
                else:
                    msg = f'Mask for {key} has not been set.' +\
                        f'Please set {mask_key} before compression.'
                    raise KeyError(msg)
        compressed_dict = {}
        for kpt_key, mask_key in key_pairs:
            kpt_array = self.get_raw_value(kpt_key)
            mask_array = np.asarray(self.get_raw_value(mask_key))
            compressed_kpt = \
                self.__class__.__remove_zero_pad__(kpt_array, mask_array)
            compressed_dict[kpt_key] = compressed_kpt
        # set value after all pairs are compressed
        self.update(compressed_dict)
        self.__keypoints_compressed__ = True

    def decompress_keypoints(self) -> None:
        """If a key contains 'keypoints', and f'{key}_mask' is in self.keys(),
        invalid zeros will be inserted to the right places and f'{key}_mask'
        will be unlocked.

        Raises:
            KeyError:
                A key contains 'keypoints' has been found
                but its corresponding mask is missing.
        """
        assert self.__keypoints_compressed__ is True
        key_pairs = []
        for key in self.keys():
            mask_key = f'{key}_mask'
            val = self.get_raw_value(key)
            if isinstance(val, np.ndarray) and \
                    'keypoints' in key and \
                    '_mask' not in key:
                if mask_key in self:
                    key_pairs.append([key, mask_key])
                else:
                    class_logger = self.__class__.logger
                    msg = f'Mask for {key} has not been found.' +\
                        f'Please remove {key} before decompression.'
                    print_log(msg=msg,
                              logger=class_logger,
                              level=logging.ERROR)
                    raise KeyError
        decompressed_dict = {}
        for kpt_key, mask_key in key_pairs:
            mask_array = np.asarray(self.get_raw_value(mask_key))
            compressed_kpt = self.get_raw_value(kpt_key)
            kpt_array = \
                self.__class__.__add_zero_pad__(compressed_kpt, mask_array)
            decompressed_dict[kpt_key] = kpt_array
        # set value after all pairs are decompressed
        self.update(decompressed_dict)
        self.__keypoints_compressed__ = False

    def dump_by_pickle(self, pkl_path: str, overwrite: bool = True) -> None:
        """Dump keys and items to a pickle file. It's a secondary dump method,
        when a HumanData instance is too large to be dumped by self.dump()

        Args:
            pkl_path (str):
                Path to a dumped pickle file.
            overwrite (bool, optional):
                Whether to overwrite if there is already a file.
                Defaults to True.

        Raises:
            ValueError:
                npz_path does not end with '.pkl'.
            FileExistsError:
                When overwrite is False and file exists.
        """
        if not check_path_suffix(pkl_path, ['.pkl']):
            raise ValueError('Not an pkl file.')
        if not overwrite:
            if check_path_existence(pkl_path, 'file') == Existence.FileExist:
                raise FileExistsError
        dict_to_dump = {
            '__key_strict__': self.__key_strict__,
            '__data_len__': self.__data_len__,
            '__keypoints_compressed__': self.__keypoints_compressed__,
        }
        dict_to_dump.update(self)
        with open(pkl_path, 'wb') as f_writeb:
            pickle.dump(dict_to_dump,
                        f_writeb,
                        protocol=pickle.HIGHEST_PROTOCOL)

    def load_by_pickle(self, pkl_path: str) -> None:
        """Load data from pkl_path and update them to self.

        When a HumanData Instance was dumped by
        self.dump_by_pickle(), use this to load.
        Args:
            npz_path (str):
                Path to a dumped npz file.
        """
        with open(pkl_path, 'rb') as f_readb:
            tmp_data_dict = pickle.load(f_readb)
            for key, value in list(tmp_data_dict.items()):
                if value is None:
                    tmp_data_dict.pop(key)
                elif key == '__key_strict__' or \
                        key == '__data_len__' or\
                        key == '__keypoints_compressed__':
                    self.__setattr__(key, value)
                    # pop the attributes to keep dict clean
                    tmp_data_dict.pop(key)
                elif key == 'bbox_xywh' and value.shape[1] == 4:
                    value = np.hstack([value, np.ones([value.shape[0], 1])])
                    tmp_data_dict[key] = value
                else:
                    tmp_data_dict[key] = value
            self.update(tmp_data_dict)
            self.__set_default_values__()

    def __set_default_values__(self) -> None:
        """For older versions of HumanData, call this method to apply missing
        values (also attributes)."""
        supported_keys = self.__class__.SUPPORTED_KEYS
        if self.__data_len__ == -1:
            for key in supported_keys:
                if key in self and \
                        'dim' in supported_keys[key] and\
                        supported_keys[key]['dim'] is not None:
                    if 'slice_key' in supported_keys[key] and\
                            supported_keys[key]['type'] == dict:
                        sub_key = supported_keys[key]['slice_key']
                        slice_dim = supported_keys[key]['dim']
                        self.__data_len__ = \
                            self[key][sub_key].shape[slice_dim]
                    else:
                        slice_dim = supported_keys[key]['dim']
                        self.__data_len__ = self[key].shape[slice_dim]
                    break
        for key in list(self.keys()):
            convention_key = f'{key}_convention'
            if key.startswith('keypoints') and \
                    not key.endswith('_mask') and \
                    not key.endswith('_convention') and \
                    convention_key not in self:
                self[convention_key] = 'human_data'

    @classmethod
    def concatenate(cls, human_data_0: _HumanData,
                    human_data_1: _HumanData) -> _HumanData:
        """Concatenate two human_data. All keys will be kept it the returned
        human_data. If either value from human_data_0 or human_data_1 matches
        data_len from its HumanData, the two values will be concatenated as a
        single value. If not, postfix will be added to the key to specify
        source of the value.

        Args:
            human_data_0 (_HumanData)
            human_data_1 (_HumanData)

        Returns:
            _HumanData:
                A new human_data instance with all concatenated data.
        """
        ret_human_data = cls.new(key_strict=False)
        set_0 = set(human_data_0.keys())
        set_1 = set(human_data_1.keys())
        common_keys = set_0.intersection(set_1)
        dim_dict_0 = human_data_0.__get_slice_dim__()
        dim_dict_1 = human_data_1.__get_slice_dim__()
        for key in common_keys:
            value_0 = human_data_0[key]
            value_1 = human_data_1[key]
            # align type
            value_0 = list(value_0) if isinstance(value_0, tuple)\
                else value_0
            value_1 = list(value_1) if isinstance(value_1, tuple)\
                else value_1
            assert type(value_0) == type(value_1)
            # align convention
            if key.startswith('keypoints') and\
                    key.endswith('_convention'):
                assert value_0 == value_1
                ret_human_data[key] = value_0
                continue
            # mask_0 and mask_1
            elif key.startswith('keypoints') and\
                    key.endswith('_mask'):
                new_mask = value_0 * value_1
                ret_human_data[key] = new_mask
                continue
            # go through the sub dict
            if isinstance(value_0, dict):
                sub_dict = {}
                for sub_key, sub_value_0 in value_0.items():
                    # only found in value_0
                    if sub_key not in value_1:
                        sub_dict[sub_key] = sub_value_0
                    # found in both values
                    else:
                        sub_value_1 = value_1[sub_key]
                        concat_sub_dict = cls.__concat_value__(
                            key=sub_key,
                            value_0=sub_value_0,
                            dim_0=dim_dict_0[key][sub_key],
                            value_1=sub_value_1,
                            dim_1=dim_dict_1[key][sub_key])
                        sub_dict.update(concat_sub_dict)
                for sub_key, sub_value_1 in value_1.items():
                    if sub_key not in value_0:
                        sub_dict[sub_key] = sub_value_1
                
                ret_human_data[key] = sub_dict
            # try concat
            else:
                concat_dict = cls.__concat_value__(key=key,
                                                   value_0=value_0,
                                                   dim_0=dim_dict_0[key],
                                                   value_1=value_1,
                                                   dim_1=dim_dict_1[key])
                ret_human_data.update(concat_dict)
        # check exclusive keys
        for key, value in human_data_0.items():
            if key not in common_keys:
                # value not for concat and slice
                if dim_dict_0[key] is None:
                    ret_human_data[key] = value
                # value aligned with data_len of HumanData_0
                else:
                    ret_human_data[f'{key}_0'] = value
        for key, value in human_data_1.items():
            if key not in common_keys:
                # same as above
                if dim_dict_1[key] is None:
                    ret_human_data[key] = value
                else:
                    ret_human_data[f'{key}_1'] = value
        return ret_human_data

    @classmethod
    def __concat_value__(cls, key: Any, value_0: Any, value_1: Any,
                         dim_0: Union[None, int], dim_1: Union[None,
                                                               int]) -> dict:
        """Concat two values from two different HumanData.

        Args:
            key (Any):
                The common key of the two values.
            value_0 (Any):
                Value from 0.
            value_1 (Any):
                Value from 1.
            dim_0 (Union[None, int]):
                The dim for concat and slice. None for N/A.
            dim_1 (Union[None, int]):
                The dim for concat and slice. None for N/A.

        Returns:
            dict:
                Dict for concatenated result.
        """
        ret_dict = {}
        if dim_0 is None or dim_1 is None:
            ret_dict[f'{key}_0'] = value_0
            ret_dict[f'{key}_1'] = value_1
        elif isinstance(value_0, list):
            ret_dict[key] = value_0 + value_1
        # elif isinstance(value_0, np.ndarray):
        else:
            ret_dict[key] = np.concatenate((value_0, value_1), axis=dim_0)
        return ret_dict

    @classmethod
    def __add_zero_pad__(cls, compressed_array: np.ndarray,
                         mask_array: np.ndarray) -> np.ndarray:
        """Pad zeros to a compressed keypoints array.

        Args:
            compressed_array (np.ndarray):
                A compressed keypoints array.
            mask_array (np.ndarray):
                The mask records compression relationship.

        Returns:
            np.ndarray:
                A keypoints array in full-size.
        """
        assert mask_array.sum() == compressed_array.shape[1]
        data_len, _, dim = compressed_array.shape
        mask_len = mask_array.shape[0]
        ret_value = np.zeros(shape=[data_len, mask_len, dim],
                             dtype=compressed_array.dtype)
        valid_mask_index = np.where(mask_array == 1)[0]
        ret_value[:, valid_mask_index, :] = compressed_array
        return ret_value

    @classmethod
    def __remove_zero_pad__(cls, zero_pad_array: np.ndarray,
                            mask_array: np.ndarray) -> np.ndarray:
        """Remove zero-padding from a full-size keypoints array.

        Args:
            zero_pad_array (np.ndarray):
                A keypoints array in full-size.
            mask_array (np.ndarray):
                The mask records compression relationship.

        Returns:
            np.ndarray:
                A compressed keypoints array.
        """
        assert mask_array.shape[0] == zero_pad_array.shape[1]
        valid_mask_index = np.where(mask_array == 1)[0]
        ret_value = np.take(zero_pad_array, valid_mask_index, axis=1)
        return ret_value

    @classmethod
    def __get_key_warn_msg__(cls, key: Any) -> str:
        """Get the warning message when a key fails the check.

        Args:
            key (Any):
                The key with wrong.

        Returns:
            str:
                The warning message.
        """
        class_name = cls.__name__
        warn_message = \
            f'{key} is absent in' +\
            f' {class_name}.SUPPORTED_KEYS.\n'
        suggestion_message = \
            'Ignore this if you know exactly' +\
            ' what you are doing.\n' +\
            'Otherwise, Call self.set_key_strict(True)' +\
            ' to avoid wrong keys.\n'
        return warn_message + suggestion_message

    @classmethod
    def __get_key_error_msg__(cls, key: Any) -> str:
        """Get the error message when a key fails the check.

        Args:
            key (Any):
                The key with wrong.

        Returns:
            str:
                The error message.
        """
        class_name = cls.__name__
        absent_message = \
            f'{key} is absent in' +\
            f' {class_name}.SUPPORTED_KEYS.\n'
        suggestion_message = \
            'Call self.set_key_strict(False)' +\
            ' to allow unsupported keys.\n'
        return absent_message + suggestion_message

    @classmethod
    def __get_value_error_msg__(cls) -> str:
        """Get the error message when a value fails the check.

        Returns:
            str:
                The error message.
        """
        error_message = \
            'An supported value doesn\'t ' +\
            'match definition.\n'
        suggestion_message = \
            'See error log for details.\n'
        return error_message + suggestion_message

    @classmethod
    def __get_sliced_result__(
            cls, input_data: Union[np.ndarray, list, tuple], slice_dim: int,
            slice_range: slice) -> Union[np.ndarray, list, tuple]:
        """Slice input_data along slice_dim with slice_range.

        Args:
            input_data (Union[np.ndarray, list, tuple]):
                Data to be sliced.
            slice_dim (int):
                Dimension to be sliced.
            slice_range (slice):
                An instance of class slice.

        Returns:
            Union[np.ndarray, list, tuple]:
                A slice of input_data.
        """
        if isinstance(input_data, np.ndarray):
            slice_list = [
                slice(None),
            ] * len(input_data.shape)
            slice_list[slice_dim] = slice_range
            sliced_data = input_data[tuple(slice_list)]
        else:
            sliced_data = \
                input_data[slice_range]
        return sliced_data