Spaces:
Sleeping
Sleeping
File size: 13,005 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import os
import os.path as osp
from glob import glob
import numpy as np
from config.config import cfg
import copy
import json
import pickle
import cv2
import torch
from pycocotools.coco import COCO
from util.human_models import smpl_x
from util.preprocessing import load_img, sanitize_bbox, process_bbox,augmentation_keep_size, load_ply, load_obj
from util.transforms import rigid_align, rigid_align_batch
import tqdm
import random
from util.formatting import DefaultFormatBundle
from detrsmpl.data.datasets.pipelines.transforms import Normalize
from humandata import HumanDataset
from detrsmpl.utils.demo_utils import xywh2xyxy, xyxy2xywh, box2cs
from detrsmpl.core.conventions.keypoints_mapping import convert_kps
import mmcv
import cv2
import numpy as np
from detrsmpl.core.visualization.visualize_keypoints2d import visualize_kp2d
from detrsmpl.core.visualization.visualize_smpl import visualize_smpl_hmr,render_smpl
from detrsmpl.models.body_models.builder import build_body_model
from detrsmpl.core.visualization.visualize_keypoints3d import visualize_kp3d
from detrsmpl.data.data_structures.multi_human_data import MultiHumanData
from detrsmpl.utils.ffmpeg_utils import video_to_images
from mmcv.runner import get_dist_info
from config.config import cfg
import torch.distributed as dist
import shutil
class INFERENCE(torch.utils.data.Dataset):
def __init__(self, img_dir=None,out_path=None):
self.output_path = out_path
self.img_dir = img_dir
self.is_vid = False
# can you change isfile to decide if it is mp4
rank, _ = get_dist_info()
if self.img_dir.endswith('.mp4'):
self.is_vid = True
img_name = self.img_dir.split('/')[-1][:-4]
# self.img_dir = self.img_dir[:-4]
else:
img_name = self.img_dir.split('/')[-1]
self.img_name = img_name+'_out'
self.output_path = os.path.join(self.output_path,self.img_name)
os.makedirs(self.output_path, exist_ok=True)
self.tmp_dir = os.path.join(self.output_path, 'temp_img')
os.makedirs(self.tmp_dir, exist_ok=True)
self.result_img_dir = os.path.join(self.output_path, 'res_img')
if not self.is_vid:
if rank == 0:
image_files = sorted(glob(self.img_dir + '/*.jpg') + glob(self.img_dir + '/*.png'))
for i, image_file in enumerate(image_files):
new_name = os.path.join(self.tmp_dir, '%06d.png'%i)
shutil.copy(image_file, new_name)
dist.barrier()
else:
if rank == 0:
video_to_images(self.img_dir, self.tmp_dir)
dist.barrier()
self.img_paths = sorted(glob(self.tmp_dir+'/*',recursive=True))
self.score_threshold = 0.2
self.resolution = [720 ,1280] # AGORA test
# self.resolution = [1200, 1600] # EHF
# self.img_paths = sorted(glob(self.img_dir,recursive=True))
self.format = DefaultFormatBundle()
self.normalize = Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])
def __len__(self):
return len(self.img_paths)
def __getitem__(self, idx):
img = load_img(self.img_paths[idx],'BGR')
img_whole_bbox = np.array([0, 0, img.shape[1],img.shape[0]])
img, img2bb_trans, bb2img_trans, _, _ = \
augmentation_keep_size(img, img_whole_bbox, 'test')
cropped_img_shape=img.shape[:2]
img = (img.astype(np.float32))
inputs = {'img': img}
targets = {
'body_bbox_center': np.array(img_whole_bbox[None]),
'body_bbox_size': np.array(img_whole_bbox[None])}
meta_info = {
'ori_shape':np.array(self.resolution),
'img_shape': np.array(img.shape[:2]),
'img2bb_trans': img2bb_trans,
'bb2img_trans': bb2img_trans,
'ann_idx': idx}
result = {**inputs, **targets, **meta_info}
result = self.normalize(result)
result = self.format(result)
return result
def inference(self, outs):
img_paths = self.img_paths
sample_num = len(outs)
output = {}
for out in outs:
ann_idx = out['image_idx']
img_cropped = mmcv.imdenormalize(
img=(out['img'].cpu().numpy()).transpose(1, 2, 0),
mean=np.array([123.675, 116.28, 103.53]),
std=np.array([58.395, 57.12, 57.375]),
to_bgr=True).astype(np.uint8)
# bb2img_trans = out['bb2img_trans']
# img2bb_trans = out['img2bb_trans']
scores = out['scores'].clone().cpu().numpy()
img_shape = out['img_shape'].cpu().numpy()[::-1] # w, h
width,height = img_shape
width += width % 2
height += height % 2
img_shape = np.array([width, height])
img = cv2.imread(img_paths[ann_idx]) # h, w
joint_proj = out['smplx_joint_proj'].clone().cpu().numpy()
joint_vis = out['smplx_joint_proj'].clone().cpu().numpy()
joint_coco = out['keypoints_coco'].clone().cpu().numpy()
joint_coco_raw = joint_coco.copy()
smpl_kp3d_coco, _ = convert_kps(out['smpl_kp3d'].clone().cpu().numpy(),src='smplx',dst='coco', approximate=True)
body_bbox = out['body_bbox'].clone().cpu().numpy()
lhand_bbox = out['lhand_bbox'].clone().cpu().numpy()
rhand_bbox = out['rhand_bbox'].clone().cpu().numpy()
face_bbox = out['face_bbox'].clone().cpu().numpy()
if self.resolution == [720, 1280]:
joint_proj[:, :, 0] = joint_proj[:, :, 0] / img_shape[0] * 3840
joint_proj[:, :, 1] = joint_proj[:, :, 1] / img_shape[1] * 2160
joint_vis[:, :, 0] = joint_vis[:, :, 0] / img_shape[0] * img.shape[1]
joint_vis[:, :, 1] = joint_vis[:, :, 1]/ img_shape[1] * img.shape[0]
joint_coco[:, :, 0] = joint_coco[:, :, 0] / img_shape[0] * img.shape[1]
joint_coco[:, :, 1] = joint_coco[:, :, 1]/ img_shape[1] * img.shape[0]
scale = np.array([
img.shape[1]/img_shape[0],
img.shape[1]/img_shape[0],
img.shape[1]/img_shape[0],
img.shape[1]/img_shape[0],
])
body_bbox_raw = body_bbox.copy()
body_bbox = body_bbox * scale
lhand_bbox = lhand_bbox * scale
rhand_bbox = rhand_bbox * scale
face_bbox = face_bbox * scale
elif self.resolution == [1200, 1600]:
joint_proj[:, :, 0] = joint_proj[:, :, 0] * (1200 / 800)
joint_proj[:, :, 1] = joint_proj[:, :, 1] * (1600 / 1066)
joint_vis[:, :, 0] = joint_vis[:, :, 0] * (1200 / 800)
joint_vis[:, :, 1] = joint_vis[:, :, 1] * (1600 / 1066)
scale = np.array([1600/1066, 1200/800, 1600/1066, 1200/800])[None]
body_bbox = body_bbox * scale
lhand_bbox = lhand_bbox * scale
rhand_bbox = rhand_bbox * scale
face_bbox = face_bbox * scale
for i, score in enumerate(scores):
if score < self.score_threshold:
break
save_name = img_paths[ann_idx].split('/')[-1][:-4] # if not crop should be -4
if self.resolution == (2160, 3840):
save_name = save_name.split('_ann_id')[0]
else:
save_name = save_name.split('_1280x720')[0]
save_dict = {
'params': {
'transl': out['cam_trans'][i].reshape(1, -1).cpu().numpy(),
'global_orient': out['smplx_root_pose'][i].reshape(1, -1).cpu().numpy(),
'body_pose': out['smplx_body_pose'][i].reshape(1, -1).cpu().numpy(),
'left_hand_pose': out['smplx_lhand_pose'][i].reshape(1, -1).cpu().numpy(),
'right_hand_pose': out['smplx_rhand_pose'][i].reshape(1, -1).cpu().numpy(),
'reye_pose': np.zeros((1, 3)),
'leye_pose': np.zeros((1, 3)),
'jaw_pose': out['smplx_jaw_pose'][i].reshape(1, -1).cpu().numpy(),
'expression': out['smplx_expr'][i].reshape(1, -1).cpu().numpy(),
'betas': out['smplx_shape'][i].reshape(1, -1).cpu().numpy()},
'joints': joint_proj[i].reshape(1, -1, 2)[0,:24]}
# save
exist_result_path = glob(osp.join(self.output_path, 'predictions', save_name + '*'))
if len(exist_result_path) == 0:
person_idx = 0
else:
last_person_idx = max([
int(name.split('personId_')[1].split('.pkl')[0])
for name in exist_result_path
])
person_idx = last_person_idx + 1
save_name += '_personId_' + str(person_idx) + '.pkl'
os.makedirs(osp.join(self.output_path, 'predictions'), exist_ok=True)
with open(osp.join(self.output_path, 'predictions', save_name),'wb') as f:
pickle.dump(save_dict, f)
# mesh
# bbox
if i == 0:
save_name = img_paths[ann_idx].split('/')[-1][:-4]
cv2.imwrite(os.path.join(self.result_img_dir,img_paths[ann_idx].split('/')[-1]), img)
else:
# dump bbox
body_xywh = xyxy2xywh(body_bbox[:i])
score = scores[:i]
out_value = [{'bbox': b, 'score': s} for b, s in zip(body_xywh, score)]
out_key = img_paths[ann_idx].split('/')[-1]
output.update({out_key: out_value})
# show bbox
img = mmcv.imshow_bboxes(img, body_bbox[:i], show=False, colors='green')
img = mmcv.imshow_bboxes(img, lhand_bbox[:i], show=False, colors='blue')
img = mmcv.imshow_bboxes(img, rhand_bbox[:i], show=False, colors='yellow')
img = mmcv.imshow_bboxes(img, face_bbox[:i], show=False, colors='red')
verts = out['smpl_verts'][:i] + out['cam_trans'][:i][:, None]
body_model_cfg = dict(
type='smplx',
keypoint_src='smplx',
num_expression_coeffs=10,
num_betas=10,
gender='neutral',
keypoint_dst='smplx_137',
model_path='data/body_models/smplx',
use_pca=False,
use_face_contour=True)
body_model = build_body_model(body_model_cfg).to('cuda')
# for n, v in enumerate(verts):
# save_obj(
# osp.join(self.out_path, 'vis', img_paths[ann_idx].split('/')[-1].rjust(5+4,'0')).replace('.jpg',f'_{n}_.obj'),
# verts = v,
# faces=torch.tensor(body_model.faces.astype(np.int32))
# )
# print(osp.join(self.out_path, 'vis', img_paths[ann_idx].split('/')[-1]))
render_smpl(
verts=verts[None],
body_model=body_model,
# K= np.array(
# [[img_shape[0]/2, 0, img_shape[0]/2],
# [0, img_shape[0]/2, img_shape[1]/2],
# [0, 0, 1]]),
K= np.array(
[[5000, 0, img_shape[0]/2],
[0, 5000, img_shape[1]/2],
[0, 0, 1]]),
R=None,
T=None,
# output_path=osp.join(self.out_path, 'vis', img_paths[ann_idx].split('/')[-1].rjust(5+4,'0')),
output_path=os.path.join(self.result_img_dir,img_paths[ann_idx].split('/')[-1]),
image_array=cv2.resize(img, (img_shape[0],img_shape[1]), cv2.INTER_CUBIC),
in_ndc=False,
alpha=0.9,
convention='opencv',
projection='perspective',
overwrite=True,
no_grad=True,
device='cuda',
resolution=[img_shape[0],img_shape[1]],
render_choice='hq',
)
return output
|