File size: 8,785 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import os.path as osp
import numpy as np
import torch
import cv2
import json
import copy
import csv
from pycocotools.coco import COCO
from config.config import cfg
from util.human_models import smpl_x

from util.transforms import world2cam, cam2pixel, rigid_align
from humandata import HumanDataset
from util.transforms import rigid_align, rigid_align_batch


class EgoBody_Kinect(HumanDataset):
    def __init__(self, transform, data_split):
        super(EgoBody_Kinect, self).__init__(transform, data_split)

        if self.data_split == 'train':
            filename = 'data/preprocessed_npz/multihuman_data/egobody_kinect_train_multi_080824.npz'
            self.annot_path_cache = 'data/preprocessed_npz/cache/egobody_kinect_train_cache_080824.npz'
            self.sample_interval = 10
        else:
            filename = 'data/preprocessed_npz/egobody_kinect_test_230503_043_fix_betas_multi.npz'
            self.annot_path_cache = 'data/preprocessed_npz/egobody_kinect_test_230503_043_fix_betas_multi_cache_100.npz'
            self.sample_interval = 100
        self.use_betas_neutral = getattr(cfg, 'egobody_fix_betas', False)

        self.img_dir = 'data/osx_data/EgoBody'
        self.annot_path = filename
        
        self.use_cache = getattr(cfg, 'use_cache', False)
        self.img_shape = (1080, 1920)  # (h, w)
        self.cam_param = {}

        # check image shape
        img_path = osp.join(self.img_dir,
                            np.load(self.annot_path)['image_path'][0])
        img_shape = cv2.imread(img_path).shape[:2]
        assert self.img_shape == img_shape, 'image shape is incorrect: {} vs {}'.format(
            self.img_shape, img_shape)

        # load data or cache
        if self.use_cache and osp.isfile(self.annot_path_cache):
            print(
                f'[{self.__class__.__name__}] loading cache from {self.annot_path_cache}'
            )
            self.datalist = self.load_cache(self.annot_path_cache)
        else:
            if self.use_cache:
                print(
                    f'[{self.__class__.__name__}] Cache not found, generating cache...'
                )
            self.datalist = self.load_data(train_sample_interval=self.sample_interval)
            if self.use_cache:
                self.save_cache(self.annot_path_cache, self.datalist)
    def evaluate(self, outs, cur_sample_idx):
        annots = self.datalist
        sample_num = len(outs)
        eval_result = {
            'pa_mpvpe_all': [],
            'pa_mpvpe_l_hand': [],
            'pa_mpvpe_r_hand': [],
            'pa_mpvpe_hand': [],
            'pa_mpvpe_face': [],
            'mpvpe_all': [],
            'mpvpe_l_hand': [],
            'mpvpe_r_hand': [],
            'mpvpe_hand': [],
            'mpvpe_face': []
        }

        vis = getattr(cfg, 'vis', False)
        vis_save_dir = cfg.vis_dir

        for n in range(sample_num):
            annot = annots[cur_sample_idx + n]
            out = outs[n]
            mesh_gt = out['smplx_mesh_cam_target']
            mesh_out = out['smplx_mesh_cam']
            ann_idx = out['gt_ann_idx']
            img_path = []
            for ann_id in ann_idx:
                img_path.append(annots[ann_id]['img_path'])
            eval_result['img_path'] = img_path
            eval_result['ann_idx'] = ann_idx
            # MPVPE from all vertices
            mesh_out_align = \
                mesh_out - np.dot(
                    smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :] + \
                    np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :]
            
            eval_result['mpvpe_all'].extend(
                np.sqrt(np.sum(
                    (mesh_out_align - mesh_gt)**2, -1)).mean(-1) * 1000)
            mesh_out_align = rigid_align_batch(mesh_out, mesh_gt)
            eval_result['pa_mpvpe_all'].extend(
                np.sqrt(np.sum(
                    (mesh_out_align - mesh_gt)**2, -1)).mean(-1) * 1000)

            # MPVPE from hand vertices
            mesh_gt_lhand = mesh_gt[:, smpl_x.hand_vertex_idx['left_hand'], :]
            mesh_out_lhand = mesh_out[:, smpl_x.hand_vertex_idx['left_hand'], :]
            mesh_gt_rhand = mesh_gt[:, smpl_x.hand_vertex_idx['right_hand'], :]
            mesh_out_rhand = mesh_out[:, smpl_x.hand_vertex_idx['right_hand'], :]
            mesh_out_lhand_align = \
                mesh_out_lhand - \
                np.dot(smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :] + \
                np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :]
                    
            mesh_out_rhand_align = \
                mesh_out_rhand - \
                np.dot(smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :] + \
                np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :]
            
            eval_result['mpvpe_l_hand'].extend(
                np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
                1000)
            eval_result['mpvpe_r_hand'].extend(
                np.sqrt(np.sum(
                    (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
                1000)
            eval_result['mpvpe_hand'].extend(
                (np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
                 1000 +
                 np.sqrt(np.sum(
                     (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
                 1000) / 2.)
            mesh_out_lhand_align = rigid_align_batch(mesh_out_lhand, mesh_gt_lhand)
            mesh_out_rhand_align = rigid_align_batch(mesh_out_rhand, mesh_gt_rhand)
            eval_result['pa_mpvpe_l_hand'].extend(
                np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
                1000)
            eval_result['pa_mpvpe_r_hand'].extend(
                np.sqrt(np.sum(
                    (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
                1000)
            eval_result['pa_mpvpe_hand'].extend(
                (np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
                 1000 +
                 np.sqrt(np.sum(
                     (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
                 1000) / 2.)
            vis = False
            if vis:
                import mmcv
                img = (out['img']).transpose(0,2,3,1)
                img = mmcv.imdenormalize(
                    img=img[0], 
                    mean=np.array([123.675, 116.28, 103.53]), 
                    std=np.array([58.395, 57.12, 57.375]),
                    to_bgr=True).astype(np.uint8)
                from detrsmpl.core.visualization.visualize_keypoints2d import visualize_kp2d
                import ipdb;ipdb.set_trace()
                visualize_kp2d(
                    out['smplx_joint_proj'][0][None],
                    image_array=img[None].copy(),
                    disable_limbs=True,
                    overwrite=True,
                    output_path='./figs/pred2d'
                )
                from pytorch3d.io import save_obj
                save_obj('temp.obj',verts=out['smplx_mesh_cam'][0],faces=torch.tensor([]))
            # MPVPE from face vertices
            mesh_gt_face = mesh_gt[:, smpl_x.face_vertex_idx, :]
            mesh_out_face = mesh_out[:, smpl_x.face_vertex_idx, :]
            mesh_out_face_align = \
                mesh_out_face - \
                np.dot(smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['neck'], None, :] + \
                np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['neck'], None, :]
            eval_result['mpvpe_face'].extend(
                np.sqrt(np.sum(
                    (mesh_out_face_align - mesh_gt_face)**2, -1)).mean(-1) * 1000)
            mesh_out_face_align = rigid_align_batch(mesh_out_face, mesh_gt_face)
            eval_result['pa_mpvpe_face'].extend(
                np.sqrt(np.sum(
                    (mesh_out_face_align - mesh_gt_face)**2, -1)).mean(-1) * 1000)
            
        # for k,v in eval_result.items():
        #     if k != 'img_path' and k != 'ann_idx':
        #         # import ipdb;ipdb.set_trace()
        #         if len(v)>1:
        #             eval_result[k] = np.concatenate(v,axis=0)
        #         else:
        #             eval_result[k] = np.array(v)

        return eval_result