File size: 44,837 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
import os
import os.path as osp
from glob import glob
import numpy as np
from config.config import cfg
import copy
import json
import pickle
import cv2
import torch
from pycocotools.coco import COCO
from util.human_models import smpl_x
from util.preprocessing import load_img, sanitize_bbox, process_bbox, load_ply, load_obj
from util.transforms import rigid_align, rigid_align_batch
import tqdm
import random
from util.formatting import DefaultFormatBundle
from detrsmpl.data.datasets.pipelines.transforms import Normalize
import time
from util.preprocessing import (
    load_img, process_bbox, augmentation_instance_sample
    ,process_human_model_output_batch_simplify,process_db_coord_batch_no_valid)
# from util.human_models import smpl_x
from .humandata import HumanDataset
import csv
KPS2D_KEYS = [
    'keypoints2d_ori', 'keypoints2d_smplx', 'keypoints2d_smpl',
    'keypoints2d_original','keypoints2d_gta'
]
KPS3D_KEYS = [
    'keypoints3d_cam', 'keypoints3d', 'keypoints3d_smplx', 'keypoints3d_smpl',
    'keypoints3d_original', 'keypoints3d_gta'
]
class AGORA_MM(HumanDataset):
    def __init__(self, transform, data_split):
        super(AGORA_MM, self).__init__(transform, data_split)
        self.img_shape = [2160,3840]
        pre_prc_file_train = 'spec_train_smpl.npz'
        pre_prc_file_test = 'spec_test_smpl.npz'
        self.save_idx = 0
        if self.data_split == 'train':
            filename = getattr(cfg, 'filename', pre_prc_file_train)
        else:
            self.test_set = 'val'
        
        self.img_dir = './data/datasets/agora'


        if data_split == 'train':
            if self.img_shape == [2160,3840]:
                self.annot_path = 'data/preprocessed_npz/multihuman_data/agora_train_3840_w_occ_multi_2010.npz'
                self.annot_path_cache = 'data/preprocessed_npz/cache/agora_train_3840_w_occ_cache_2010.npz'
            elif self.img_shape == [720,1280]:
                self.annot_path = 'data/preprocessed_npz/multihuman_data/agora_train_1280_multi_1010.npz'
                self.annot_path_cache = 'data/preprocessed_npz/cache/agora_train_cache_1280_1010.npz'

        elif data_split == 'test':
            if self.img_shape == [2160,3840]:
                self.annot_path = 'data/preprocessed_npz/multihuman_data/agora_validation_multi_3840_1010.npz'
                self.annot_path_cache = 'data/preprocessed_npz/cache/agora_validation_cache_3840_1010_occ_cache_balance.npz'
            elif self.img_shape == [720,1280]:
                self.annot_path = 'data/preprocessed_npz/multihuman_data/agora_validation_1280_1010_occ.npz'
                self.annot_path_cache = 'data/preprocessed_npz/cache/agora_validation_cache_1280_1010_occ.npz'
        
        self.use_cache = getattr(cfg, 'use_cache', False)
        self.cam_param = {}

        # load data or cache
        if self.use_cache and osp.isfile(self.annot_path_cache):
            print(f'[{self.__class__.__name__}] loading cache from {self.annot_path_cache}')
            self.datalist = self.load_cache(self.annot_path_cache)
        else:
            if self.use_cache:
                print(f'[{self.__class__.__name__}] Cache not found, generating cache...')
            self.datalist = self.load_data(
                train_sample_interval=getattr(cfg, f'{self.__class__.__name__}_train_sample_interval', 1))
            if self.use_cache:
                self.save_cache(self.annot_path_cache, self.datalist)


    def load_data(self, train_sample_interval=1):

        content = np.load(self.annot_path, allow_pickle=True)
        
        try:
            frame_range = content['frame_range']
        except KeyError:
            frame_range = \
                np.array([[i, i + 1] for i in range(self.num_data)])

        num_examples = len(frame_range)
        
        if 'meta' in content:
            meta = content['meta'].item()
            print('meta keys:', meta.keys())
        else:
            meta = None
            print(
                'No meta info provided! Please give height and width manually')

        print(
            f'Start loading humandata {self.annot_path} into memory...\nDataset includes: {content.files}'
        )
        tic = time.time()
        image_path = content['image_path']

        if meta is not None and 'height' in meta:
            height = np.array(meta['height'])
            width = np.array(meta['width'])
            image_shape = np.stack([height, width], axis=-1)
        else:
            image_shape = None

        if meta is not None and 'gender' in meta and len(meta['gender']) != 0:
            gender = meta['gender']
        else:
            gender = None
        
        if meta is not None and 'is_kid' in meta and len(meta['is_kid']) != 0:
            is_kid = meta['is_kid']
        else:
            is_kid = None
                    
        bbox_xywh = content['bbox_xywh']

        if 'smplx' in content:
            smplx = content['smplx'].item()
            as_smplx = 'smplx'
        elif 'smpl' in content:
            smplx = content['smpl'].item()
            as_smplx = 'smpl'
        elif 'smplh' in content:
            smplx = content['smplh'].item()
            as_smplx = 'smplh'
        # TODO: temp solution, should be more general. But SHAPY is very special
        elif self.__class__.__name__ == 'SHAPY':
            smplx = {}
        else:
            raise KeyError('No SMPL for SMPLX available, please check keys:\n'
                           f'{content.files}')

        print('Smplx param', smplx.keys())

        if 'lhand_bbox_xywh' in content and 'rhand_bbox_xywh' in content:
            lhand_bbox_xywh = content['lhand_bbox_xywh']
            rhand_bbox_xywh = content['rhand_bbox_xywh']
        else:
            lhand_bbox_xywh = np.zeros_like(bbox_xywh)
            rhand_bbox_xywh = np.zeros_like(bbox_xywh)

        if 'face_bbox_xywh' in content:
            face_bbox_xywh = content['face_bbox_xywh']
        else:
            face_bbox_xywh = np.zeros_like(bbox_xywh)

        decompressed = False
        if content['__keypoints_compressed__']:
            decompressed_kps = self.decompress_keypoints(content)
            decompressed = True

        keypoints3d = None
        valid_kps3d = False
        keypoints3d_mask = None
        valid_kps3d_mask = False
        
        
        # processing keypoints
        for kps3d_key in KPS3D_KEYS:
            if kps3d_key in content:
                keypoints3d = decompressed_kps[kps3d_key][:, self.SMPLX_137_MAPPING, :] if decompressed \
                else content[kps3d_key][:, self.SMPLX_137_MAPPING, :]
                valid_kps3d = True
                if keypoints3d.shape[-1] == 4:
                    valid_kps3d_mask = True
                break
        if self.keypoints2d is not None:
            keypoints2d = decompressed_kps[self.keypoints2d][:, self.SMPLX_137_MAPPING, :] if decompressed \
                else content[self.keypoints2d][:, self.SMPLX_137_MAPPING, :]
            

        else:
            for kps2d_key in KPS2D_KEYS:
                if kps2d_key in content:
                    keypoints2d = decompressed_kps[kps2d_key][:, self.SMPLX_137_MAPPING, :] if decompressed \
                        else content[kps2d_key][:, self.SMPLX_137_MAPPING, :]
                    
        if keypoints2d.shape[-1] == 3:
            valid_kps3d_mask = True
        occlusion = content['meta'][()]['occ'] if 'occ' in content['meta'][()] and len(content['meta'][()]['occ'])>0 else None
        
        print('Done. Time: {:.2f}s'.format(time.time() - tic))

        datalist = []
        # num_examples

        # processing each image, filter according to bbox valid
        for i in tqdm.tqdm(range(int(num_examples))):
            if self.data_split == 'train' and i % train_sample_interval != 0:
                continue
            frame_start, frame_end = frame_range[i]
            img_path = osp.join(self.img_dir, image_path[frame_start])
            # im_shape = cv2.imread(img_path).shape[:2]
            img_shape = image_shape[
                frame_start] if image_shape is not None else self.img_shape
            

            bbox_list = bbox_xywh[frame_start:frame_end, :4]
            
            valid_idx = []
            body_bbox_list = []
            
            if hasattr(cfg, 'bbox_ratio'):
                bbox_ratio = cfg.bbox_ratio * 0.833  # preprocess body bbox is giving 1.2 box padding
            else:
                bbox_ratio = 1.25
            
            for bbox_i, bbox in enumerate(bbox_list):
                
                bbox = process_bbox(bbox,
                                    img_width=img_shape[1],
                                    img_height=img_shape[0],
                                    ratio=bbox_ratio)
                if bbox is None:
                    continue
                else:
                    valid_idx.append(frame_start + bbox_i)
                    bbox[2:] += bbox[:2]
                    body_bbox_list.append(bbox)
            if len(valid_idx) == 0:
                continue
            valid_num = len(valid_idx)
            # hand/face bbox
            lhand_bbox_list = []
            rhand_bbox_list = []
            face_bbox_list = []
            
            for bbox_i in valid_idx:
                lhand_bbox = lhand_bbox_xywh[bbox_i]
                
                rhand_bbox = rhand_bbox_xywh[bbox_i]
                face_bbox = face_bbox_xywh[bbox_i]
                if lhand_bbox[-1] > 0:  # conf > 0
                    lhand_bbox = lhand_bbox[:4]
                    if hasattr(cfg, 'bbox_ratio'):
                        lhand_bbox = process_bbox(lhand_bbox,
                                                  img_width=img_shape[1],
                                                  img_height=img_shape[0],
                                                  ratio=bbox_ratio)
                    if lhand_bbox is not None:
                        lhand_bbox[2:] += lhand_bbox[:2]  # xywh -> xyxy
                else:
                    lhand_bbox = None
                if rhand_bbox[-1] > 0:
                    rhand_bbox = rhand_bbox[:4]
                    if hasattr(cfg, 'bbox_ratio'):
                        rhand_bbox = process_bbox(rhand_bbox,
                                                  img_width=img_shape[1],
                                                  img_height=img_shape[0],
                                                  ratio=bbox_ratio)
                    if rhand_bbox is not None:
                        rhand_bbox[2:] += rhand_bbox[:2]  # xywh -> xyxy
                else:
                    rhand_bbox = None
                if face_bbox[-1] > 0:
                    face_bbox = face_bbox[:4]
                    if hasattr(cfg, 'bbox_ratio'):
                        face_bbox = process_bbox(face_bbox,
                                                 img_width=img_shape[1],
                                                 img_height=img_shape[0],
                                                 ratio=bbox_ratio)
                    if face_bbox is not None:
                        face_bbox[2:] += face_bbox[:2]  # xywh -> xyxy
                else:
                    face_bbox = None
                lhand_bbox_list.append(lhand_bbox)
                rhand_bbox_list.append(rhand_bbox)
                face_bbox_list.append(face_bbox)
            
            # lhand_bbox = np.stack(lhand_bbox_list,axis=0)
            # rhand_bbox = np.stack(rhand_bbox_list,axis=0)
            # face_bbox = np.stack(face_bbox_list,axis=0)
            joint_img = keypoints2d[valid_idx]
            
            # num_joints = joint_cam.shape[0]
            # joint_valid = np.ones((num_joints, 1))
            if valid_kps3d:
                joint_cam = keypoints3d[valid_idx]
            else:
                joint_cam = None
            
            if 'leye_pose_0' in smplx.keys():
                smplx.pop('leye_pose_0')
            if 'leye_pose_1' in smplx.keys():
                smplx.pop('leye_pose_1')
            if 'leye_pose' in smplx.keys():
                smplx.pop('leye_pose')
            if 'reye_pose_0' in smplx.keys():
                smplx.pop('reye_pose_0')
            if 'reye_pose_1' in smplx.keys():
                smplx.pop('reye_pose_1')
            if 'reye_pose' in smplx.keys():
                smplx.pop('reye_pose')
            
            occlusion_frame = occlusion[valid_idx] \
                if occlusion is not None else np.array([1]*(valid_num))

            smplx_param = {k: v[valid_idx] for k, v in smplx.items()}
            gender_ = gender[valid_idx] \
                if gender is not None else np.array(['neutral']*(valid_num))
                
            is_kid_ = is_kid[valid_idx] \
                if is_kid is not None else np.array([1]*(valid_num))
            lhand_bbox_valid = lhand_bbox_xywh[valid_idx,4]
            rhand_bbox_valid = rhand_bbox_xywh[valid_idx,4]
            face_bbox_valid = face_bbox_xywh[valid_idx,4]
            
            smplx_param['root_pose'] = smplx_param.pop('global_orient', None)
            smplx_param['shape'] = smplx_param.pop('betas', None)
            smplx_param['trans'] = smplx_param.pop('transl', np.zeros(3))
            smplx_param['lhand_pose'] = smplx_param.pop('left_hand_pose', None)
            smplx_param['rhand_pose'] = smplx_param.pop(
                'right_hand_pose', None)
            smplx_param['expr'] = smplx_param.pop('expression', None)

            # TODO do not fix betas, give up shape supervision
            if 'betas_neutral' in smplx_param and self.data_split == 'train':
                smplx_param['shape'] = smplx_param.pop('betas_neutral')
                # smplx_param['shape'] = np.zeros(10, dtype=np.float32)

            if smplx_param['lhand_pose'] is None or self.body_only == True:
                smplx_param['lhand_valid'] = np.zeros(valid_num, dtype=np.bool8)
            else:
                smplx_param['lhand_valid'] = lhand_bbox_valid.astype(np.bool8)
                
            if smplx_param['rhand_pose'] is None or self.body_only == True:
                smplx_param['rhand_valid'] = np.zeros(valid_num, dtype=np.bool8)
            else:
                smplx_param['rhand_valid'] = rhand_bbox_valid.astype(np.bool8)
            
            if smplx_param['expr'] is None or self.body_only == True:
                smplx_param['face_valid'] = np.zeros(valid_num, dtype=np.bool8)
            else:
                smplx_param['face_valid'] = face_bbox_valid.astype(np.bool8)

            if joint_cam is not None and np.any(np.isnan(joint_cam)):
                continue
            
            
            datalist.append({
                'img_path': img_path,
                'img_shape': img_shape,
                'bbox': body_bbox_list,
                'lhand_bbox': lhand_bbox_list,
                'rhand_bbox': rhand_bbox_list,
                'face_bbox': face_bbox_list,
                'joint_img': joint_img,
                'joint_cam': joint_cam,
                'smplx_param': smplx_param,
                'as_smplx': as_smplx,
                'gender': gender_,
                'occlusion': occlusion_frame,
                'is_kid': is_kid_,
            })

        # save memory
        del content, image_path, bbox_xywh, lhand_bbox_xywh, rhand_bbox_xywh, face_bbox_xywh, keypoints3d, keypoints2d

        if self.data_split == 'train':
            print(f'[{self.__class__.__name__} train] original size:',
                  int(num_examples), '. Sample interval:',
                  train_sample_interval, '. Sampled size:', len(datalist))

        if getattr(cfg, 'data_strategy',
                   None) == 'balance' and self.data_split == 'train':
            print(
                f'[{self.__class__.__name__}] Using [balance] strategy with datalist shuffled...'
            )
            random.shuffle(datalist)

        return datalist
   
    def __getitem__(self, idx):
        try:
            data = copy.deepcopy(self.datalist[idx])
        except Exception as e:
            print(f'[{self.__class__.__name__}] Error loading data {idx}')
            print(e)
            exit(0)

        img_path, img_shape, bbox = \
            data['img_path'], data['img_shape'], data['bbox']
        as_smplx = data['as_smplx']
        gender = data['gender'].copy()
        for gender_str, gender_num in {
            'neutral': -1, 'male': 0, 'female': 1}.items():
            gender[gender==gender_str]=gender_num
        gender = gender.astype(int)    
        
        img_whole_bbox = np.array([0, 0, img_shape[1], img_shape[0]])        
        img = load_img(img_path, order='BGR')

        num_person = len(data['bbox'])
        data_name = self.__class__.__name__
        img, img2bb_trans, bb2img_trans, rot, do_flip = \
            augmentation_instance_sample(img, img_whole_bbox, self.data_split,data,data_name)
        cropped_img_shape=img.shape[:2]
        
        num_person = len(data['bbox'])
        if self.data_split == 'train':
            joint_cam = data['joint_cam']  # num, 137,4
            if joint_cam is not None:
                dummy_cord = False
                joint_cam[:,:,:3] = \
                    joint_cam[:,:,:3] - joint_cam[:, self.joint_set['root_joint_idx'], None, :3]  # root-relative
            else:
                # dummy cord as joint_cam
                dummy_cord = True
                joint_cam = np.zeros(
                    (num_person, self.joint_set['joint_num'], 4),
                    dtype=np.float32)

            joint_img = data['joint_img']
            # do rotation on keypoints
            joint_img_aug, joint_cam_wo_ra, joint_cam_ra, joint_trunc = \
                process_db_coord_batch_no_valid(
                    joint_img, joint_cam, do_flip, img_shape,
                    self.joint_set['flip_pairs'], img2bb_trans, rot,
                    self.joint_set['joints_name'], smpl_x.joints_name,
                    cropped_img_shape)
            joint_img_aug[:,:,2:] = joint_img_aug[:,:,2:] * joint_trunc
            
            # smplx coordinates and parameters
            smplx_param = data['smplx_param']
            smplx_pose, smplx_shape, smplx_expr, smplx_pose_valid, \
            smplx_joint_valid, smplx_expr_valid, smplx_shape_valid = \
                process_human_model_output_batch_simplify(
                    smplx_param, do_flip, rot, as_smplx)
            # if cam not provided, we take joint_img as smplx joint 2d, 
            # which is commonly the case for our processed humandata
            # change smplx_shape if use_betas_neutral
            # processing follows that in process_human_model_output
            
            if self.use_betas_neutral:
                smplx_shape = smplx_param['betas_neutral'].reshape(
                    num_person, -1)
                smplx_shape[(np.abs(smplx_shape) > 3).any(axis=1)] = 0.
                smplx_shape = smplx_shape.reshape(num_person, -1)
            # SMPLX joint coordinate validity
            # for name in ('L_Big_toe', 'L_Small_toe', 'L_Heel', 'R_Big_toe', 'R_Small_toe', 'R_Heel'):
            #     smplx_joint_valid[smpl_x.joints_name.index(name)] = 0
            smplx_joint_valid = smplx_joint_valid[:, :, None]

            lhand_bbox_center_list = []
            lhand_bbox_valid_list = []
            lhand_bbox_size_list = []
            lhand_bbox_list = []
            face_bbox_center_list = []
            face_bbox_size_list = []
            face_bbox_valid_list = []
            face_bbox_list = []
            rhand_bbox_center_list = []
            rhand_bbox_valid_list = []
            rhand_bbox_size_list = []
            rhand_bbox_list = []
            body_bbox_center_list = []
            body_bbox_size_list = []
            body_bbox_valid_list = []
            body_bbox_list = []

            for i in range(num_person):
                body_bbox, body_bbox_valid = self.process_hand_face_bbox(
                    data['bbox'][i], do_flip, img_shape, img2bb_trans,
                    cropped_img_shape)
                
                lhand_bbox, lhand_bbox_valid = self.process_hand_face_bbox(
                    data['lhand_bbox'][i], do_flip, img_shape, img2bb_trans,
                    cropped_img_shape)
                lhand_bbox_valid *= smplx_param['lhand_valid'][i]
                
                rhand_bbox, rhand_bbox_valid = self.process_hand_face_bbox(
                    data['rhand_bbox'][i], do_flip, img_shape, img2bb_trans,
                    cropped_img_shape)
                rhand_bbox_valid *= smplx_param['rhand_valid'][i]
                
                face_bbox, face_bbox_valid = self.process_hand_face_bbox(
                    data['face_bbox'][i], do_flip, img_shape, img2bb_trans,
                    cropped_img_shape)
                face_bbox_valid *= smplx_param['face_valid'][i]
                
                if do_flip:
                    lhand_bbox, rhand_bbox = rhand_bbox, lhand_bbox
                    lhand_bbox_valid, rhand_bbox_valid = rhand_bbox_valid, lhand_bbox_valid
                    
                body_bbox_list.append(body_bbox)
                lhand_bbox_list.append(lhand_bbox)
                rhand_bbox_list.append(rhand_bbox)
                face_bbox_list.append(face_bbox)
                
                lhand_bbox_center = (lhand_bbox[0] + lhand_bbox[1]) / 2.
                rhand_bbox_center = (rhand_bbox[0] + rhand_bbox[1]) / 2.
                face_bbox_center = (face_bbox[0] + face_bbox[1]) / 2.
                body_bbox_center = (body_bbox[0] + body_bbox[1]) / 2.
                lhand_bbox_size = lhand_bbox[1] - lhand_bbox[0]
                rhand_bbox_size = rhand_bbox[1] - rhand_bbox[0]

                face_bbox_size = face_bbox[1] - face_bbox[0]
                body_bbox_size = body_bbox[1] - body_bbox[0]
                lhand_bbox_center_list.append(lhand_bbox_center)
                lhand_bbox_valid_list.append(lhand_bbox_valid)
                lhand_bbox_size_list.append(lhand_bbox_size)
                face_bbox_center_list.append(face_bbox_center)
                face_bbox_size_list.append(face_bbox_size)
                face_bbox_valid_list.append(face_bbox_valid)
                rhand_bbox_center_list.append(rhand_bbox_center)
                rhand_bbox_valid_list.append(rhand_bbox_valid)
                rhand_bbox_size_list.append(rhand_bbox_size)
                body_bbox_center_list.append(body_bbox_center)
                body_bbox_size_list.append(body_bbox_size)
                body_bbox_valid_list.append(body_bbox_valid)
            
            
            body_bbox = np.stack(body_bbox_list, axis=0)
            lhand_bbox = np.stack(lhand_bbox_list, axis=0)
            rhand_bbox = np.stack(rhand_bbox_list, axis=0)
            face_bbox = np.stack(face_bbox_list, axis=0)
            lhand_bbox_center = np.stack(lhand_bbox_center_list, axis=0)
            lhand_bbox_valid = np.stack(lhand_bbox_valid_list, axis=0)
            lhand_bbox_size = np.stack(lhand_bbox_size_list, axis=0)
            face_bbox_center = np.stack(face_bbox_center_list, axis=0)
            face_bbox_size = np.stack(face_bbox_size_list, axis=0)
            face_bbox_valid = np.stack(face_bbox_valid_list, axis=0)
            body_bbox_center = np.stack(body_bbox_center_list, axis=0)
            body_bbox_size = np.stack(body_bbox_size_list, axis=0)
            body_bbox_valid = np.stack(body_bbox_valid_list, axis=0)
            rhand_bbox_center = np.stack(rhand_bbox_center_list, axis=0)
            rhand_bbox_valid = np.stack(rhand_bbox_valid_list, axis=0)
            rhand_bbox_size = np.stack(rhand_bbox_size_list, axis=0)


            if 'occlusion' in data:
                occlusion = data['occlusion']
                occ_mask = occlusion<97
                
                joint_img_aug[:,:,2] = joint_img_aug[:,:,2]*occ_mask[:,None]
                joint_cam_wo_ra[:,:,3] = joint_cam_wo_ra[:,:,3]*occ_mask[:,None]
                joint_trunc = joint_trunc*occ_mask[:,None,None]
                smplx_pose_valid = smplx_pose_valid*occ_mask[:,None]
                smplx_joint_valid = smplx_joint_valid*occ_mask[:,None,None]
                smplx_expr_valid = smplx_expr_valid*occ_mask
                smplx_shape_valid = smplx_shape_valid*occ_mask
                rhand_bbox_valid = rhand_bbox_valid*occ_mask
                lhand_bbox_valid = lhand_bbox_valid*occ_mask
                face_bbox_valid = face_bbox_valid*occ_mask
                
            
            if 'is_kid' in data:
                is_kid = data['is_kid'].copy()
                smplx_shape_valid = smplx_shape_valid * (is_kid==0)
                
                
            inputs = {'img': img}

            joint_img_aug[:,:,2] = joint_img_aug[:,:,2] * body_bbox_valid[:,None]
            
            is_3D = float(False) if dummy_cord else float(True)
            
            targets = {
                # keypoints2d, [0,img_w],[0,img_h] -> [0,1] -> [0,output_hm_shape]
                'joint_img': joint_img_aug[body_bbox_valid>0], 
                # joint_cam, kp3d wo ra # raw kps3d probably without ra
                'joint_cam': joint_cam_wo_ra[body_bbox_valid>0], 
                # kps3d with body, face, hand ra
                'smplx_joint_cam': joint_cam_ra[body_bbox_valid>0], 
                'smplx_pose': smplx_pose[body_bbox_valid>0],
                'smplx_shape': smplx_shape[body_bbox_valid>0],
                'smplx_expr': smplx_expr[body_bbox_valid>0],
                'lhand_bbox_center': lhand_bbox_center[body_bbox_valid>0], 
                'lhand_bbox_size': lhand_bbox_size[body_bbox_valid>0],
                'rhand_bbox_center': rhand_bbox_center[body_bbox_valid>0], 
                'rhand_bbox_size': rhand_bbox_size[body_bbox_valid>0],
                'face_bbox_center': face_bbox_center[body_bbox_valid>0], 
                'face_bbox_size': face_bbox_size[body_bbox_valid>0],
                'body_bbox_center': body_bbox_center[body_bbox_valid>0], 
                'body_bbox_size': body_bbox_size[body_bbox_valid>0],
                'body_bbox': body_bbox.reshape(-1,4)[body_bbox_valid>0],
                'lhand_bbox': lhand_bbox.reshape(-1,4)[body_bbox_valid>0],
                'rhand_bbox': rhand_bbox.reshape(-1,4)[body_bbox_valid>0],
                'face_bbox': face_bbox.reshape(-1,4)[body_bbox_valid>0],
                'gender': gender[body_bbox_valid>0]}
            
            meta_info = {
                'joint_trunc': joint_trunc[body_bbox_valid>0],
                'smplx_pose_valid': smplx_pose_valid[body_bbox_valid>0],
                'smplx_shape_valid': smplx_shape_valid[body_bbox_valid>0],
                'smplx_expr_valid': smplx_expr_valid[body_bbox_valid>0],
                'is_3D': is_3D, 
                'lhand_bbox_valid': lhand_bbox_valid[body_bbox_valid>0],
                'rhand_bbox_valid': rhand_bbox_valid[body_bbox_valid>0], 
                'face_bbox_valid': face_bbox_valid[body_bbox_valid>0],
                'body_bbox_valid': body_bbox_valid[body_bbox_valid>0],
                'img_shape': np.array(img.shape[:2]), 
                'ori_shape':data['img_shape'],
                'idx': idx
               
            }            
            result = {**inputs, **targets, **meta_info}
            
            result = self.normalize(result)
            result = self.format(result)
            return result

        

        if self.data_split == 'test':
            self.cam_param = {}
            joint_cam = data['joint_cam']
            
            if joint_cam is not None:
                dummy_cord = False
                joint_cam[:,:,:3] = joint_cam[:,:,:3] - joint_cam[
                    :, self.joint_set['root_joint_idx'], None, :3]  # root-relative
            else:
                # dummy cord as joint_cam
                dummy_cord = True
                joint_cam = np.zeros(
                    (num_person, self.joint_set['joint_num'], 3),
                                     dtype=np.float32)

            joint_img = data['joint_img']
            
            
            joint_img_aug, joint_cam_wo_ra, joint_cam_ra, joint_trunc = \
                process_db_coord_batch_no_valid(
                    joint_img, joint_cam, do_flip, img_shape,
                    self.joint_set['flip_pairs'], img2bb_trans, rot,
                    self.joint_set['joints_name'], smpl_x.joints_name,
                    cropped_img_shape)
            
            

            # smplx coordinates and parameters
            smplx_param = data['smplx_param']
            # smplx_cam_trans = np.array(
            #     smplx_param['trans']) if 'trans' in smplx_param else None
            # TODO: remove this, seperate smpl and smplx
            smplx_pose, smplx_shape, smplx_expr, smplx_pose_valid, \
            smplx_joint_valid, smplx_expr_valid, smplx_shape_valid = \
                process_human_model_output_batch_simplify(
                    smplx_param, do_flip, rot, as_smplx)
            
            # if cam not provided, we take joint_img as smplx joint 2d, 
            # which is commonly the case for our processed humandata
            if self.use_betas_neutral:
                smplx_shape = smplx_param['betas_neutral'].reshape(
                    num_person, -1)
                smplx_shape[(np.abs(smplx_shape) > 3).any(axis=1)] = 0.
                smplx_shape = smplx_shape.reshape(num_person, -1)
            
            smplx_joint_valid = smplx_joint_valid[:, :, None]
            
            lhand_bbox_center_list = []
            lhand_bbox_valid_list = []
            lhand_bbox_size_list = []
            lhand_bbox_list = []
            face_bbox_center_list = []
            face_bbox_size_list = []
            face_bbox_valid_list = []
            face_bbox_list = []
            rhand_bbox_center_list = []
            rhand_bbox_valid_list = []
            rhand_bbox_size_list = []
            rhand_bbox_list = []
            body_bbox_center_list = []
            body_bbox_size_list = []
            body_bbox_valid_list = []
            body_bbox_list = []
                        
            for i in range(num_person):
                lhand_bbox, lhand_bbox_valid = self.process_hand_face_bbox(
                    data['lhand_bbox'][i], do_flip, img_shape, img2bb_trans,
                    cropped_img_shape)
                rhand_bbox, rhand_bbox_valid = self.process_hand_face_bbox(
                    data['rhand_bbox'][i], do_flip, img_shape, img2bb_trans,
                    cropped_img_shape)
                face_bbox, face_bbox_valid = self.process_hand_face_bbox(
                    data['face_bbox'][i], do_flip, img_shape, img2bb_trans,
                    cropped_img_shape)
                
                body_bbox, body_bbox_valid = self.process_hand_face_bbox(
                    data['bbox'][i], do_flip, img_shape, img2bb_trans,
                    cropped_img_shape)                

                if do_flip:
                    lhand_bbox, rhand_bbox = rhand_bbox, lhand_bbox
                    lhand_bbox_valid, rhand_bbox_valid = rhand_bbox_valid, lhand_bbox_valid            

                body_bbox_list.append(body_bbox)
                lhand_bbox_list.append(lhand_bbox)
                rhand_bbox_list.append(rhand_bbox)
                face_bbox_list.append(face_bbox)

                lhand_bbox_center = (lhand_bbox[0] + lhand_bbox[1]) / 2.
                rhand_bbox_center = (rhand_bbox[0] + rhand_bbox[1]) / 2.
                face_bbox_center = (face_bbox[0] + face_bbox[1]) / 2.
                body_bbox_center = (body_bbox[0] + body_bbox[1]) / 2.
                lhand_bbox_size = lhand_bbox[1] - lhand_bbox[0]
                rhand_bbox_size = rhand_bbox[1] - rhand_bbox[0]

                face_bbox_size = face_bbox[1] - face_bbox[0]
                body_bbox_size = body_bbox[1] - body_bbox[0]
                lhand_bbox_center_list.append(lhand_bbox_center)
                lhand_bbox_valid_list.append(lhand_bbox_valid)
                lhand_bbox_size_list.append(lhand_bbox_size)
                face_bbox_center_list.append(face_bbox_center)
                face_bbox_size_list.append(face_bbox_size)
                face_bbox_valid_list.append(face_bbox_valid)
                rhand_bbox_center_list.append(rhand_bbox_center)
                rhand_bbox_valid_list.append(rhand_bbox_valid)
                rhand_bbox_size_list.append(rhand_bbox_size)
                body_bbox_center_list.append(body_bbox_center)
                body_bbox_size_list.append(body_bbox_size)
                body_bbox_valid_list.append(body_bbox_valid)

            body_bbox = np.stack(body_bbox_list, axis=0)
            lhand_bbox = np.stack(lhand_bbox_list, axis=0)
            rhand_bbox = np.stack(rhand_bbox_list, axis=0)
            face_bbox = np.stack(face_bbox_list, axis=0)
            lhand_bbox_center = np.stack(lhand_bbox_center_list, axis=0)
            lhand_bbox_valid = np.stack(lhand_bbox_valid_list, axis=0)
            lhand_bbox_size = np.stack(lhand_bbox_size_list, axis=0)
            face_bbox_center = np.stack(face_bbox_center_list, axis=0)
            face_bbox_size = np.stack(face_bbox_size_list, axis=0)
            face_bbox_valid = np.stack(face_bbox_valid_list, axis=0)
            body_bbox_center = np.stack(body_bbox_center_list, axis=0)
            body_bbox_size = np.stack(body_bbox_size_list, axis=0)
            body_bbox_valid = np.stack(body_bbox_valid_list, axis=0)
            rhand_bbox_center = np.stack(rhand_bbox_center_list, axis=0)
            rhand_bbox_valid = np.stack(rhand_bbox_valid_list, axis=0)
            rhand_bbox_size = np.stack(rhand_bbox_size_list, axis=0)
                                            
                            
            inputs = {'img': img}
            
            targets = {
                # keypoints2d, [0,img_w],[0,img_h] -> [0,1] -> [0,output_hm_shape]
                'joint_img': joint_img_aug, 
                # projected smplx if valid cam_param, else same as keypoints2d
                # joint_cam, kp3d wo ra # raw kps3d probably without ra
                'joint_cam': joint_cam_wo_ra, 
                'ann_idx': idx,
                # kps3d with body, face, hand ra
                'smplx_joint_cam': joint_cam_ra,
                'smplx_pose': smplx_pose,
                'smplx_shape': smplx_shape,
                'smplx_expr': smplx_expr,
                'lhand_bbox_center': lhand_bbox_center, 
                'lhand_bbox_size': lhand_bbox_size,
                'rhand_bbox_center': rhand_bbox_center, 
                'rhand_bbox_size': rhand_bbox_size,
                'face_bbox_center': face_bbox_center, 
                'face_bbox_size': face_bbox_size,
                'body_bbox_center': body_bbox_center, 
                'body_bbox_size': body_bbox_size,
                'body_bbox': body_bbox.reshape(-1,4),
                'lhand_bbox': lhand_bbox.reshape(-1,4),
                'rhand_bbox': rhand_bbox.reshape(-1,4),
                'face_bbox': face_bbox.reshape(-1,4),
                'gender': gender,
                'bb2img_trans': bb2img_trans,
            }
            
            if self.body_only:
                meta_info = {
                    'joint_trunc': joint_trunc,
                    'smplx_pose_valid': smplx_pose_valid,
                    'smplx_shape_valid': float(smplx_shape_valid),
                    'smplx_expr_valid': smplx_expr_valid,
                    'is_3D': float(False) if dummy_cord else float(True), 
                    'lhand_bbox_valid': lhand_bbox_valid,
                    'rhand_bbox_valid': rhand_bbox_valid, 
                    'face_bbox_valid': face_bbox_valid,
                    'body_bbox_valid': body_bbox_valid,
                    'img_shape': np.array(img.shape[:2]), 
                    'ori_shape':data['img_shape'],
                    'idx': idx
                }
            else:
                meta_info = {
                    'joint_trunc': joint_trunc,
                    'smplx_pose_valid': smplx_pose_valid,
                    'smplx_shape_valid': smplx_shape_valid,
                    'smplx_expr_valid': smplx_expr_valid,
                    'is_3D': float(False) if dummy_cord else float(True), 
                    'lhand_bbox_valid': lhand_bbox_valid,
                    'rhand_bbox_valid': rhand_bbox_valid, 
                    'face_bbox_valid': face_bbox_valid,
                    'body_bbox_valid': body_bbox_valid,
                    'img_shape': np.array(img.shape[:2]), 
                    'ori_shape':data['img_shape'],
                    'idx': idx
                   }
            
            result = {**inputs, **targets, **meta_info}
            result = self.normalize(result)
            result = self.format(result)
            return result
        
    def evaluate(self, outs, cur_sample_idx):
        annots = self.datalist
        sample_num = len(outs)
        eval_result = {
            'pa_mpvpe_all': [],
            'pa_mpvpe_l_hand': [],
            'pa_mpvpe_r_hand': [],
            'pa_mpvpe_hand': [],
            'pa_mpvpe_face': [],
            'mpvpe_all': [],
            'mpvpe_l_hand': [],
            'mpvpe_r_hand': [],
            'mpvpe_hand': [],
            'mpvpe_face': []
        }

        vis = getattr(cfg, 'vis', False)
        vis_save_dir = cfg.vis_dir
        
        csv_file = f'{cfg.result_dir}/agora_smplx_error.csv'
        file = open(csv_file, 'a', newline='')
        for n in range(sample_num):
            annot = annots[cur_sample_idx + n]
            out = outs[n]
            mesh_gt = out['smplx_mesh_cam_target']
            mesh_out = out['smplx_mesh_cam']
            
            # print('zzz',mesh_gt.shape,mesh_out.shape)
            # from pytorch3d.io import save_obj
            # for m_i,(mesh_gt_i,mesh_out_i) in enumerate(zip(mesh_gt,mesh_out)):
            #     save_obj('temp_gt_%d.obj'%m_i,verts=torch.Tensor(mesh_gt_i),faces=torch.tensor([]))
            #     save_obj('temp_pred_%d.obj'%m_i,verts=torch.Tensor(mesh_out_i),faces=torch.tensor([]))
            
            ann_idx = out['gt_ann_idx']
            img_path = []
            for ann_id in ann_idx:
                img_path.append(annots[ann_id]['img_path'])
            eval_result['img_path'] = img_path
            eval_result['ann_idx'] = ann_idx
            # MPVPE from all vertices
            mesh_out_align = \
                mesh_out - np.dot(
                    smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :] + \
                    np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['pelvis'], None, :]
            
            eval_result['mpvpe_all'].extend(
                np.sqrt(np.sum(
                    (mesh_out_align - mesh_gt)**2, -1)).mean(-1) * 1000)
            mesh_out_align = rigid_align_batch(mesh_out, mesh_gt)
            eval_result['pa_mpvpe_all'].extend(
                np.sqrt(np.sum(
                    (mesh_out_align - mesh_gt)**2, -1)).mean(-1) * 1000)

            # MPVPE from hand vertices
            mesh_gt_lhand = mesh_gt[:, smpl_x.hand_vertex_idx['left_hand'], :]
            mesh_out_lhand = mesh_out[:, smpl_x.hand_vertex_idx['left_hand'], :]
            mesh_gt_rhand = mesh_gt[:, smpl_x.hand_vertex_idx['right_hand'], :]
            mesh_out_rhand = mesh_out[:, smpl_x.hand_vertex_idx['right_hand'], :]
            mesh_out_lhand_align = \
                mesh_out_lhand - \
                np.dot(smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :] + \
                np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['lwrist'], None, :]
                    
            mesh_out_rhand_align = \
                mesh_out_rhand - \
                np.dot(smpl_x.J_regressor, mesh_out).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :] + \
                np.dot(smpl_x.J_regressor, mesh_gt).transpose(1,0,2)[:, smpl_x.J_regressor_idx['rwrist'], None, :]
            
            eval_result['mpvpe_l_hand'].extend(
                np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
                1000)
            eval_result['mpvpe_r_hand'].extend(
                np.sqrt(np.sum(
                    (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
                1000)
            eval_result['mpvpe_hand'].extend(
                (np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
                 1000 +
                 np.sqrt(np.sum(
                     (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
                 1000) / 2.)
            mesh_out_lhand_align = rigid_align_batch(mesh_out_lhand, mesh_gt_lhand)
            mesh_out_rhand_align = rigid_align_batch(mesh_out_rhand, mesh_gt_rhand)
            eval_result['pa_mpvpe_l_hand'].extend(
                np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
                1000)
            eval_result['pa_mpvpe_r_hand'].extend(
                np.sqrt(np.sum(
                    (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
                1000)
            eval_result['pa_mpvpe_hand'].extend(
                (np.sqrt(np.sum(
                    (mesh_out_lhand_align - mesh_gt_lhand)**2, -1)).mean(-1) *
                 1000 +
                 np.sqrt(np.sum(
                     (mesh_out_rhand_align - mesh_gt_rhand)**2, -1)).mean(-1) *
                 1000) / 2.)
            
            
            save_error=True
            if save_error:
                writer = csv.writer(file)
                new_line = [ann_idx[n],img_path[n], eval_result['mpvpe_all'][-1], eval_result['pa_mpvpe_all'][-1]]
                writer.writerow(new_line)
                self.save_idx += 1
            
            
        return eval_result


    def print_eval_result(self, eval_result):

        print('AGORA test results are dumped at: ' +
              osp.join(cfg.result_dir, 'predictions'))

        if self.data_split == 'test' and self.test_set == 'test':  # do not print. just submit the results to the official evaluation server
            return

        print('======AGORA-val======')
        print('PA MPVPE (All): %.2f mm' % np.mean(eval_result['pa_mpvpe_all']))
        print('PA MPVPE (L-Hands): %.2f mm' %
              np.mean(eval_result['pa_mpvpe_l_hand']))
        print('PA MPVPE (R-Hands): %.2f mm' %
              np.mean(eval_result['pa_mpvpe_r_hand']))
        print('PA MPVPE (Hands): %.2f mm' %
              np.mean(eval_result['pa_mpvpe_hand']))
        print('PA MPVPE (Face): %.2f mm' %
              np.mean(eval_result['pa_mpvpe_face']))
        print()

        print('MPVPE (All): %.2f mm' % np.mean(eval_result['mpvpe_all']))
        print('MPVPE (L-Hands): %.2f mm' %
              np.mean(eval_result['mpvpe_l_hand']))
        print('MPVPE (R-Hands): %.2f mm' %
              np.mean(eval_result['mpvpe_r_hand']))
        print('MPVPE (Hands): %.2f mm' % np.mean(eval_result['mpvpe_hand']))
        print('MPVPE (Face): %.2f mm' % np.mean(eval_result['mpvpe_face']))
        
        out_file = osp.join(cfg.result_dir,'agora_val.txt')
        if os.path.exists(out_file):
            f = open(out_file, 'a+')
        else:
            f = open(out_file, 'w', encoding="utf-8")
            
        f.write('\n')
        f.write(f'{cfg.exp_name}\n')            
        f.write(f'AGORA-val dataset: \n')
        f.write('PA MPVPE (All): %.2f mm\n' %
                np.mean(eval_result['pa_mpvpe_all']))
        f.write('PA MPVPE (L-Hands): %.2f mm\n' %
                np.mean(eval_result['pa_mpvpe_l_hand']))
        f.write('PA MPVPE (R-Hands): %.2f mm\n' %
                np.mean(eval_result['pa_mpvpe_r_hand']))
        f.write('PA MPVPE (Hands): %.2f mm\n' %
                np.mean(eval_result['pa_mpvpe_hand']))
        f.write('PA MPVPE (Face): %.2f mm\n' %
                np.mean(eval_result['pa_mpvpe_face']))
        f.write('MPVPE (All): %.2f mm\n' % np.mean(eval_result['mpvpe_all']))
        f.write('MPVPE (L-Hands): %.2f mm\n' %
                np.mean(eval_result['mpvpe_l_hand']))
        f.write('MPVPE (R-Hands): %.2f mm\n' %
                np.mean(eval_result['mpvpe_r_hand']))
        f.write('MPVPE (Hands): %.2f mm\n' % np.mean(eval_result['mpvpe_hand']))
        f.write('MPVPE (Face): %.2f mm\n' % np.mean(eval_result['mpvpe_face']))