MFLP / app.py
苏泓源
test
ef007f9
raw
history blame
748 Bytes
import gradio as gr
import numpy as np
import torch
from model import Net
model = Net(100, 50, 10)
model.load_state_dict(torch.load('model.pth'))
model.eval()
def infer(file_obj):
results = ""
for file in file_obj:
data = np.load(file.name)
output = model(torch.from_numpy(data).float()).detach().numpy()
results += np.array_str(output) + "\n"
return results
with gr.Blocks("Test") as demo:
gr.Markdown("## Test")
output = gr.Textbox(label="Output")
data = gr.UploadButton(
label="Upload a .npy",
file_count="multiple",
file_types=[".npy"])
data.upload(fn=infer, inputs=data, outputs=output)
if __name__ == "__main__":
demo.launch()