Spaces:
Runtime error
Runtime error
File size: 20,927 Bytes
a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 02085f0 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 0dce8af a257639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import io
import warnings
from typing import Tuple, Dict, Optional, List, Text
import gym
import math
import numpy as np
import matplotlib.pyplot as plt
import pickle, os
from numpy import ndarray
from facility_location.utils.config import Config
from facility_location.env.facility_location_client import FacilityLocationClient
from facility_location.env.obs_extractor import ObsExtractor
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
from facility_location.agent import MaskedFacilityLocationActorCriticPolicy
from facility_location.utils.policy import get_policy_kwargs
class PMPEnv(gym.Env):
EPSILON = 1e-6
def __init__(self,
cfg: Config):
self.cfg = cfg
self._train_region = cfg.env_specs['region']
self._eval_region = cfg.eval_specs['region']
self._min_n = cfg.env_specs['min_n']
self._max_n = cfg.env_specs['max_n']
self._min_p_ratio = cfg.env_specs['min_p_ratio']
self._max_p_ratio = cfg.env_specs['max_p_ratio']
self._max_steps_scale = cfg.env_specs['max_steps_scale']
self._tabu_stable_steps_scale = cfg.env_specs['tabu_stable_steps_scale']
self._popstar = cfg.env_specs['popstar']
self._seed(cfg.seed)
self._done = False
self._set_node_edge_range()
self._flc = FacilityLocationClient(cfg, self._np_random)
self._obs_extractor = ObsExtractor(cfg, self._flc, self._node_range, self._edge_range)
self._declare_spaces()
def _declare_spaces(self) -> None:
self.observation_space = gym.spaces.Dict({
'node_features': gym.spaces.Box(low=0, high=1, shape=(self._node_range, self.get_node_feature_dim())),
'static_adjacency_list': gym.spaces.Box(low=0, high=self._node_range, shape=(self._edge_range, 2), dtype=np.int64),
'dynamic_adjacency_list': gym.spaces.Box(low=0, high=self._node_range, shape=(self._edge_range, 2), dtype=np.int64),
'node_mask': gym.spaces.Box(low=0, high=1, shape=(self._node_range,), dtype=np.bool),
'static_edge_mask': gym.spaces.Box(low=0, high=1, shape=(self._edge_range,), dtype=np.bool),
'dynamic_edge_mask': gym.spaces.Box(low=0, high=1, shape=(self._edge_range,), dtype=np.bool),
})
if not self._popstar:
self.action_space = gym.spaces.Discrete(self._node_range ** 2)
else:
self.action_space = gym.spaces.Discrete(self._node_range ** 2)
def _set_node_edge_range(self) -> None:
self._node_range = self._max_n + 2
self._edge_range = int(self._max_n ** 2 * self._max_p_ratio)
def get_node_feature_dim(self) -> int:
return self._obs_extractor.get_node_dim()
def _seed(self, seed: int) -> None:
self._np_random = np.random.default_rng(seed)
def get_reward(self) -> float:
reward = self._obj_value[self._t - 1] - self._obj_value[self._t]
return reward
def _transform_action(self, action: np.ndarray) -> np.ndarray:
if self._popstar:
action = np.array(np.unravel_index(action, (self._node_range, self._node_range)))
action = action - 1
return action
def step(self, action: np.ndarray):
if self._done:
raise RuntimeError('Action taken after episode is done.')
obj_value, solution, info = self._flc.swap(action, self._t)
self._t += 1
self._done = (self._t == self._max_steps)
self._obj_value[self._t] = obj_value
self._solution[self._t] = solution
reward = self.get_reward()
if obj_value < self._best_obj_value - self.EPSILON:
self._best_obj_value = obj_value
self._best_solution = solution
self._last_best_t = self._t
elif (self._t - self._last_best_t) % self._tabu_stable_steps == 0:
self._flc.reset_tabu_time()
# if self._done:
# print('done')
# for i in range(self._t):
# print(f'{i}:',np.where(self._solution[i]))
return self._get_obs(self._t), reward, self._done, False, info
def reset(self, seed = 0) -> Optional[Dict]:
if self._train_region is None:
points, demands, n, p = self._generate_new_instance()
self._flc.set_instance(points, demands, n, p, False)
else:
points, demands, n, p = self._use_real_instance()
self._flc.set_instance(points, demands, n, p, True)
return self.prepare(n, p), {}
def prepare(self, n: int, p: int) -> Dict:
initial_obj_value, initial_solution = self._flc.compute_initial_solution()
self._obs_extractor.reset()
self._done = False
self._t = 0
self._max_steps = max(int(p * self._max_steps_scale), 5)
self._obj_value = np.zeros(self._max_steps + 1)
self._obj_value[0] = initial_obj_value
self._solution = np.zeros((self._max_steps + 1, n), dtype=bool)
self._solution[0] = initial_solution
self._best_solution = initial_solution
self._best_obj_value = initial_obj_value
self._last_best_t = 0
self._tabu_stable_steps = max(1, round(self._max_steps * self._tabu_stable_steps_scale))
return self._get_obs(self._t)
def render(self, mode='human', dpi=300) -> Optional[np.ndarray]:
gdf, facilities = self._flc.get_gdf_facilities()
if len(facilities) > 10:
warnings.warn('Too many facilities to render. Only rendering the first 10.')
facilities = facilities[:10]
cm = plt.get_cmap('tab10')
fig, axs = plt.subplots(1, 2, figsize=(12, 6), dpi=dpi)
for i, f in enumerate(facilities):
gdf.loc[gdf['assignment'] == f].plot(ax=axs[0],
zorder=2,
alpha=0.7,
edgecolor="k",
color=cm(i))
gdf.loc[[f]].plot(ax=axs[0],
marker='*',
markersize=300,
zorder=3,
alpha=0.7,
edgecolor="k",
color=cm(i))
axs[0].set_title("Facility Location", fontweight="bold")
plot_obj_value = self._obj_value[:self._t + 1]
axs[1].plot(plot_obj_value, marker='.', markersize=10, color='k')
axs[1].set_title("Objective Value", fontweight="bold")
axs[1].set_xticks(np.arange(self._max_steps + 1, step=math.ceil((self._max_steps + 1) / 10)))
fig.tight_layout()
if mode == 'human':
plt.show()
else:
io_buf = io.BytesIO()
fig.savefig(io_buf, format='raw', dpi=dpi)
io_buf.seek(0)
img_arr = np.reshape(np.frombuffer(io_buf.getvalue(), dtype=np.uint8),
newshape=(int(fig.bbox.bounds[3]), int(fig.bbox.bounds[2]), -1))
io_buf.close()
return img_arr
def close(self):
plt.close()
def _generate_new_instance(self) -> Tuple[np.ndarray, np.ndarray, int, int]:
n = self._np_random.integers(self._min_n, self._max_n, endpoint=True)
p_ratio = self._np_random.uniform(self._min_p_ratio, self._max_p_ratio)
p = int(max(n * p_ratio, 4))
points = self._np_random.uniform(size=(n, 2))
while np.unique(points, axis=0).shape[0] != n:
points = self._np_random.uniform(size=(n, 2))
demands = self._np_random.random(size=(n,))
return points, demands, n, p
def _use_real_instance(self) -> Tuple[np.ndarray, np.ndarray, int, int]:
data_path = './data/{}/pkl'.format(self.cfg.eval_specs['region'])
files = os.listdir(data_path)
files = [f for f in files if f.endswith('.pkl')]
sample_data_path = os.path.join(data_path, files[self._np_random.integers(len(files))])
with open(sample_data_path, 'rb') as f:
np_data = pickle.load(f)
n = self._np_random.integers(self._min_n, self._max_n, endpoint=True)
p = max(int(n * self._np_random.uniform(self._min_p_ratio, self._max_p_ratio)), 4)
sample_cbgs = self._np_random.choice(list(np_data[1].keys()), n, replace=False)
points = []
demands = []
for cbg in sample_cbgs:
points.append(np_data[1][cbg]['pos'])
demands.append(np_data[1][cbg]['demand'])
points = np.array(points)
demands = np.array(demands)
return points, demands, n, p
def _get_obs(self, t: int) -> Dict:
return self._obs_extractor.get_obs(t)
def get_initial_solution(self) -> np.ndarray:
return self._solution[0]
class EvalPMPEnv(PMPEnv):
def __init__(self,
cfg: Config,
positions, demands, n, p, boost=False):
self._eval_np = (n,p)
self._eval_seed = cfg.eval_specs['seed']
self._boost = boost
self.points = positions
self.demands = demands
self._n = n
self._p = p
super().__init__(cfg)
def _set_node_edge_range(self) -> None:
n, p = self._eval_np
self._node_range = n + 2
self._edge_range = n * p
def get_eval_num_cases(self) -> int:
return self._eval_num_cases
def get_eval_np(self) -> Tuple[int, int]:
return self._eval_np
def reset_instance_id(self) -> None:
self._instance_id = 0
def step(self, action: np.ndarray):
if self._done:
raise RuntimeError('Action taken after episode is done.')
obj_value, solution, info = self._flc.swap(action, self._t)
self._t += 1
self._done = (self._t == self._max_steps)
self._obj_value[self._t] = obj_value
self._solution[self._t] = solution
reward = self.get_reward()
if obj_value < self._best_obj_value - self.EPSILON:
self._best_obj_value = obj_value
self._best_solution = solution
self._last_best_t = self._t
elif (self._t - self._last_best_t) % self._tabu_stable_steps == 0:
self._flc.reset_tabu_time()
print(self._t, self._max_steps)
return self._get_obs(self._t), reward, self._done, False, info
def get_reward(self) -> float:
if self._done:
reward = -np.min(self._obj_value)
else:
reward = 0.0
return reward
def get_best_solution(self) -> np.ndarray:
return self._best_solution
def reset(self, seed = 0) -> Dict:
self._flc.set_instance(self.points, self.demands, self._n, self._p, False)
return self.prepare(self._n, self._p, self._boost), {}
def prepare(self, n: int, p: int, boost: bool) -> Dict:
initial_obj_value, initial_solution = self._flc.compute_initial_solution()
self._obs_extractor.reset()
self._done = False
self._t = 0
self._max_steps = max(int(p * self._max_steps_scale), 5)
if boost:
self._max_steps = max(int(self._max_steps_scale / 10), 5)
self._obj_value = np.zeros(self._max_steps + 1)
self._obj_value[0] = initial_obj_value
self._solution = np.zeros((self._max_steps + 1, n), dtype=bool)
self._solution[0] = initial_solution
self._best_solution = initial_solution
self._best_obj_value = initial_obj_value
self._last_best_t = 0
self._tabu_stable_steps = max(1, round(self._max_steps * self._tabu_stable_steps_scale))
return self._get_obs(self._t)
def get_instance(self) -> Tuple[np.ndarray, np.ndarray, int, int]:
points, demands, n, p = self._flc.get_instance()
return points, demands, n, p
def get_distance_and_cost(self) -> Tuple[np.ndarray, np.ndarray]:
return self._flc.get_distance_and_cost_matrix()
def evaluate(self, solution: np.ndarray) -> float:
self._flc.set_solution(solution)
obj_value = self._flc.compute_obj_value()
return obj_value
class MULTIPMP(PMPEnv):
EPSILON = 1e-6
def __init__(self,
cfg,
data_npy,
boost = False):
self.cfg = cfg
self.data_npy = data_npy
self._boost = boost
self._all_points, self._all_demands, self._n, self._all_p = self._load_multi_facility_data(data_npy)
self.boost = boost
self._all_solutions = self._load_multi_facility_solutions(boost)
print('all_solutions:', self._all_solutions)
self._final_solutions = list(self._all_solutions)
self._num_types = len(self._all_p)
self._current_type = 0
self._all_max_steps, self._old_mask, self._new_mask = self._get_max_steps()
super().__init__(cfg)
def _set_node_edge_range(self) -> None:
self._node_range = self._n + 2
self._edge_range = self._n * max(self._all_p)
def step(self, action: np.ndarray):
if self._num_types == 1:
reward = self.get_reward()
self._done = True
pickle.dump(self._final_solutions, open('./facility_location/solutions.pkl', 'wb'))
return self._get_obs(self._t), reward, self._done, False, {}
if self._done:
raise RuntimeError('Action taken after episode is done.')
obj_value, solution, info = self._flc.swap(action, self._t, stage=2)
self._t += 1
self._done = (self._t == self._all_max_steps[-1] and self._current_type == len(self._all_max_steps) - 1)
self._obj_value[self._t] = obj_value
self._solution[self._t] = solution
reward = self.get_reward()
if obj_value < self._best_obj_value - self.EPSILON:
self._best_obj_value = obj_value
self._best_solution = solution
self._last_best_t = self._t
elif (self._t - self._last_best_t) % self._tabu_stable_steps == 0:
self._flc.reset_tabu_time()
print(self._t, self._all_max_steps[self._current_type])
if self._t == self._all_max_steps[self._current_type] and not self._done:
self._t = 0
self._multi_obj += obj_value
self._final_solutions[self._current_type] = solution
self._update_type()
if self._done:
pickle.dump(self._final_solutions, open('./facility_location/solutions.pkl', 'wb'))
return self._get_obs(self._t), reward, self._done, False, info
def reset(self, seed = 0) -> Optional[Dict]:
self._current_type = 0
points = self._all_points
demands = self._all_demands[:,0]
n = self._n
p = self._all_p[0]
solution = self._all_solutions[0]
self._multi_obj = 0
self._flc.set_instance(points, demands, n, p, True)
return self.prepare(n, p, solution), {}
def _update_type(self):
if self._current_type >= self._num_types:
raise RuntimeError('Action taken after episode is done.')
if self._current_type < self._num_types - 1:
self._current_type += 1
print(f'current type: {self._current_type}')
print(self._num_types)
points = self._all_points
demands = self._all_demands[:,self._current_type]
n = self._n
p = self._all_p[self._current_type]
solution = self._all_solutions[self._current_type]
self._flc.set_instance(points, demands, n, p, True)
self.prepare(n, p, solution)
def prepare(self, n: int, p: int, solution: list) -> Dict:
self._obs_extractor.reset()
self._done = False
self._t = 0
if len(self._all_p) > 1:
self._max_steps = self._all_max_steps[self._current_type]
self._flc.init_facility_mask(self._old_mask[self._current_type], self._new_mask[self._current_type])
else:
self._max_steps = 0
initial_solution = solution
initial_obj_value = self._flc.compute_obj_value_from_solution(initial_solution,stage=2)
self._obj_value = np.zeros(self._max_steps + 1)
self._obj_value[0] = initial_obj_value
self._solution = np.zeros((self._max_steps + 1, n), dtype=bool)
self._solution[0] = initial_solution
self._best_solution = initial_solution
self._best_obj_value = initial_obj_value
self._last_best_t = 0
self._tabu_stable_steps = max(1, round(self._max_steps * self._tabu_stable_steps_scale))
return self._get_obs(self._t)
def _get_max_steps(self) -> list:
# print(self._all_solutions)
tmp_all_solitions = list(self._all_solutions)
max_steps = []
old_idx = []
new_idx = []
for t in range(self._num_types):
count_true = [sum(s) for s in zip(*(tmp_all_solitions[t:]))]
# print(count_true)
old = [i for i in range(len(count_true)) if count_true[i] > 1 and tmp_all_solitions[t][i]]
new = [i for i in range(len(count_true)) if count_true[i] == 0]
if len(old):
old_idx.append(old)
new_idx.append(new)
max_steps.append(len(old))
for i in old:
count_true[i] = count_true[i] - 1
# print(max_steps, old_idx, new_idx)
return max_steps, old_idx, new_idx
def _generate_new_instance(self) -> Tuple[np.ndarray, np.ndarray, int, int]:
n = self._np_random.integers(self._min_n, self._max_n, endpoint=True)
p_ratio = self._np_random.uniform(self._min_p_ratio, self._max_p_ratio)
p = int(max(n * p_ratio, 4))
points = self._np_random.uniform(size=(n, 2))
while np.unique(points, axis=0).shape[0] != n:
points = self._np_random.uniform(size=(n, 2))
demands = self._np_random.random(size=(n,))
return points, demands, n, p
def _load_multi_facility_data(self, data_npy) -> Tuple[np.ndarray, np.ndarray]:
data = data_npy.split('\n')
n = len(data)
p = int((len(data[0].split(' '))-2) / 2)
positions = []
demands = []
actual_facilities = []
ps = []
for row in data:
row = row.split(' ')
row = [x for x in row if len(x)]
positions.append([float(row[0]), float(row[1])])
demand = []
for i in range(2, 2+p):
demand.append(float(row[i]))
demands.append(demand)
actual_facility = []
for i in range(2+p, 2+2*p):
actual_facility.append(bool(int(float(row[i]))))
actual_facilities.append(actual_facility)
positions = np.array(positions)
positions = np.deg2rad(positions)
demands = np.array(demands)
actual_facilities = np.array(actual_facilities)
ps = actual_facilities.sum(axis=0)
return positions, demands, n, ps
def _load_multi_facility_solutions(self, boost) -> list:
def load_model(positions, demands, n, p, boost):
eval_env = EvalPMPEnv(self.cfg, positions, demands, n, p, boost)
eval_env = DummyVecEnv([lambda: eval_env])
policy_kwargs = get_policy_kwargs(self.cfg)
test_model = PPO(MaskedFacilityLocationActorCriticPolicy,
eval_env,
verbose=1,
policy_kwargs=policy_kwargs,
device='cuda:1')
train_model = PPO.load(self.cfg.load_model_path)
test_model.set_parameters(train_model.get_parameters())
return test_model, eval_env
def get_optimal_solution(model, eval_env):
obs = eval_env.reset()
done = False
while not done:
action, _ = model.predict(obs, deterministic=True)
obs, _, done, info = eval_env.step(action)
return eval_env.get_attr('_best_solution')[0]
multi_solutions = []
for i in range(len(self._all_p)):
positions = self._all_points
demands = self._all_demands[:,i]
n = self._n
p = self._all_p[i]
model, env = load_model(positions,demands,n,p,boost)
multi_solutions.append(get_optimal_solution(model, env))
return multi_solutions
def get_reward(self) -> float:
if self._done:
reward = np.min(self._obj_value)
else:
reward = 0.0
return reward
|