# Copyright (C) 2021, Mindee. # This program is licensed under the Apache License version 2. # See LICENSE or go to for full license details. import os import streamlit as st import streamlit.components.v1 as components import time import matplotlib.pyplot as plt import pandas as pd from pipeline import Pipeline import html from IPython.core.display import display, HTML import json from PIL import Image from tqdm import tqdm import logging from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts from htbuilder.units import percent, px from htbuilder.funcs import rgba, rgb import copy from download_models import check_if_exist import re import numpy as np from sklearn.manifold import TSNE from sklearn.decomposition import PCA import plotly.express as plotpx import umap def image(src_as_string, **style): return img(src=src_as_string, style=styles(**style)) def link(link, text, **style): return a(_href=link, _target="_blank", style=styles(**style))(text) def update_highlight(current,old): out = current matches_background_new = [(m.start(0), m.end(0)) for m in re.finditer("background-color:rgba\\(234, 131, 4,", out)] matches_background_old = [(m.start(0), m.end(0)) for m in re.finditer("background-color:rgba\\(234, 131, 4,", old)] for x,y in zip(matches_background_old,matches_background_new): try: old_importance = re.search("\\d+\\.\\d+",old[x[1]:x[1]+20]) new_importance = re.search("\\d+\\.\\d+",current[y[1]:y[1]+20]) if int(out[y[1]]) ==0 and float(old[x[1]]) != 0: out = out[0:y[1]] + str(old_importance.group(0)) + out[y[1]:] return False,out if float(out[y[1]]) !=0 and float(old[x[1]]) != 0: if float(old[x[1]]) > float(out[y[1]]): out = out[0:y[1]] + str(old_importance.group(0))[0] + out[y[1]:] return False,out except Exception as e: return True, out return True,out def hidde_menu(): footer_style = """ """ st.markdown(footer_style, unsafe_allow_html=True) def main(myargs): project_dir = os.path.dirname(os.path.abspath(__file__)) def add_content(columns): if 'hg_df' in st.session_state: columns[1].dataframe(st.session_state.hg_df) if 'all_l' in st.session_state: columns[2].dataframe(st.session_state.all_l) if "highlight_samples" in st.session_state: if "selected_indices" in st.session_state: if len(st.session_state.selected_indices) >0: out = "" l = st.session_state.selected_indices l.sort() for ind in l: out += st.session_state.highlight_samples[ind] + "

" components.html(out,scrolling=True) else: components.html(st.session_state.highlight_samples[0]) else: components.html(st.session_state.highlight_samples[0]) # Add Plot - Only for File version if st.session_state['input_type'] == 'File' and "embeddings_all" in st.session_state and st.session_state.embeddings_plot in ["2D", "3D"]: indices = [x for x in range(st.session_state.data_df[st.session_state.input_column].values.shape[0])] if "selected_indices" in st.session_state: if len(st.session_state.selected_indices) >=4: l = st.session_state.selected_indices l.sort() indices = l if st.session_state.data_df[st.session_state.input_column].values.shape[0] >=2: sub_embeddings = st.session_state.embeddings_all[indices] sentences = st.session_state.data_df[st.session_state.input_column].values[indices] sentences_parses = [] break_size = 20 for data in sentences: d = data.split() size_sentence = len(d) if len(d) >break_size: out = "" for lower_bound in range(0,size_sentence, break_size): upper_bound = lower_bound + break_size if lower_bound + break_size <= size_sentence else size_sentence out += " ".join(x for x in d[lower_bound:upper_bound]) + "
" sentences_parses.append(out) else: sentences_parses.append(data) prediction_label = st.session_state.hg_df["Prediction"].values[indices] prediction_worst_label = [] for pred in prediction_label: preds = pred.split(" | ") if len(preds) ==1: prediction_worst_label.extend(preds) else: worst_index = min([st.session_state.predictor.bert_model.config['worst_rank'].index(x) for x in preds]) prediction_worst_label.append(st.session_state.predictor.bert_model.config['worst_rank'][worst_index]) if st.session_state.embeddings_type == "PCA": low_dim_embeddings = PCA(n_components=3).fit_transform(sub_embeddings) elif st.session_state.embeddings_type == "TSNE": low_dim_embeddings = TSNE(n_components=3,init="pca",perplexity=st.session_state.perplexity,learning_rate=st.session_state.learning_rate).fit_transform(sub_embeddings) else: n_neighbors = min(st.session_state.n_neighbors, len(sub_embeddings)-1 ) low_dim_embeddings = umap.UMAP(n_neighbors=n_neighbors, min_dist=st.session_state.min_dist,n_components=3).fit(sub_embeddings).embedding_ df_embeddings = pd.DataFrame(low_dim_embeddings) df_embeddings = df_embeddings.rename(columns={0:'x',1:'y',2:'z'}) df_embeddings = df_embeddings.assign(severity=prediction_worst_label) df_embeddings = df_embeddings.assign(text=sentences_parses) df_embeddings = df_embeddings.assign(data_index=indices) df_embeddings = df_embeddings.assign(all_predictions=prediction_label) if st.session_state.embeddings_plot == "2D": # 2D plot = plotpx.scatter( df_embeddings, x='x', y='y', color='severity', labels={'color': 'severity'}, hover_data=['text','all_predictions','data_index'],title = 'BERT Embeddings Visualization - Please select rows (at least 4) to display specific examples' ) else: # 3D plot = plotpx.scatter_3d( df_embeddings, x='x', y='y', z='z', color='severity', labels={'color': 'severity'}, hover_data=['text','all_predictions','data_index'],title = 'BERT Embeddings Visualization - Please select rows (at least 4) to display specific examples' ) st.plotly_chart(plot,use_container_width=True,) #worst_rank_ind = [classes.index(x) for x in worst_rank] if 'bert_lime_output' in st.session_state and st.session_state.bert_lime: if len(st.session_state.bert_lime_output) >0: # need to re-run prediction st.markdown("BERT Interpretability") components.html(st.session_state.bert_lime_output[0]) if 'json_output' in st.session_state and st.session_state.json_out: st.markdown("Here are your analysis results in JSON format:") out = {} if "selected_indices" in st.session_state: if len(st.session_state.selected_indices) >0: l = st.session_state.selected_indices l.sort() for ind in l: out['sample_'+str(ind)] = st.session_state.json_output['sample_'+str(ind)] st.json(out) else: out['sample_'+str(0)] = st.session_state.json_output['sample_'+str(0)] st.json(out) else: # Display JSON out['sample_'+str(0)] = st.session_state.json_output['sample_'+str(0)] st.json(out) def delete_var_session(keys:list): for key in keys: if key in st.session_state: del st.session_state[key] im = Image.open(os.path.join(project_dir, "imgs/icon.png")) # Wide mode st.set_page_config(page_title='HCSBC', layout = 'wide',page_icon=im,menu_items={ 'Get Help': 'https://github.com/thiagosantos1/BreastPathologyClassificationSystem', 'Report a bug': "https://github.com/thiagosantos1/BreastPathologyClassificationSystem", 'About': "An end-to-end breast pathology classification system https://github.com/thiagosantos1/BreastPathologyClassificationSystem" }) st.sidebar.image(os.path.join(project_dir,"imgs/doctor.png"),use_column_width=False) # Designing the interface st.markdown("

HCSBC: Hierarchical Classification System for Breast Cancer Specimen Report

", unsafe_allow_html=True) st.markdown("System Pipeline: Pathology Emory Pubmed BERT + 6 independent Machine Learning discriminators") # For newline st.write('\n') # Instructions st.markdown("*Hint: click on the top-right corner to enlarge it!*") # Set the columns cols = st.columns((1, 1, 1)) #cols = st.columns(4) cols[0].subheader("Input Data") cols[1].subheader("Severity Predictions") cols[2].subheader("Diagnose Predictions") # Sidebar # File selection st.sidebar.title("Data Selection") st.session_state['input_type'] = st.sidebar.radio("Input Selection", ('File', 'Text'), key="data_format",index=1) if "prev_input_type" not in st.session_state: st.session_state['prev_input_type'] = st.session_state.input_type st.write('', unsafe_allow_html=True) # Disabling warning st.set_option('deprecation.showfileUploaderEncoding', False) if st.session_state['input_type'] == 'File': if st.session_state['prev_input_type'] == 'Text': delete_var_session(keys=["data_df","data_columns","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"]) st.session_state['prev_input_type'] = "File" # Choose your own file new_file = st.sidebar.file_uploader("Upload Document", type=['xlsx','csv']) if 'uploaded_file' in st.session_state and st.session_state.uploaded_file != None and new_file != None: if st.session_state.uploaded_file.name != new_file.name and st.session_state.uploaded_file.id != new_file.id: delete_var_session(keys=["data_df","data_columns","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"]) st.session_state['uploaded_file'] = new_file data_columns = ['Input'] if 'data_columns' not in st.session_state: st.session_state['data_columns'] = data_columns if st.session_state.uploaded_file is not None: if 'data_df' not in st.session_state: if st.session_state.uploaded_file.name.endswith('.xlsx'): df = pd.read_excel(st.session_state.uploaded_file) else: df = pd.read_csv(st.session_state.uploaded_file) df = df.loc[:, ~df.columns.str.contains('^Unnamed')] df = df.fillna("NA") data_columns = df.columns.values st.session_state['data_df'] = df st.session_state['data_columns'] = data_columns else: if st.session_state['prev_input_type'] == 'File': delete_var_session(keys=["data_df","input_column","user_input","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"]) st.session_state['prev_input_type'] = "Text" input_column = "Input" data = st.sidebar.text_area("Please enter a breast cancer pathology diagnose",value="BRWIRE Left wire directed segmntal mastectomy; short suture, superior; long suture, lateral breast, left, wire-directed segmental mastectomy: - infiltrating ductal carcinoma, nottingham grade i, 0.8 cm in maximum gross dimension. - ductal carcinoma in situ, low nuclear grade, solid and cribriform types, associated with microcalcifications and partially involving a small intraductal papilloma (0.2 cm). - invasive and in situ carcinoma extend to within 0.2 cm of the anterior specimen edge separately submitted margin specimen below). - no angiolymphatic invasion identifie - adjacent breast with biopsy site changes, a small intraductal papilloma (0.2 cm), and fibrocystic changes. - see synoptic report.") if "user_input" in st.session_state: if data != st.session_state.user_input: delete_var_session(keys=["data_df","input_column","user_input","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"]) st.session_state['user_input'] = data if len(st.session_state.user_input.split()) >0: st.session_state['data_df'] = pd.DataFrame([st.session_state['user_input']], columns =[input_column]) st.session_state['input_column'] = input_column st.session_state['uploaded_file'] = True else: delete_var_session(keys=["data_df","input_column","user_input","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"]) if 'data_df' in st.session_state: cols[0].dataframe(st.session_state.data_df) if st.session_state['input_type'] == 'File': # Columns selection st.sidebar.write('\n') st.sidebar.title("Column For Prediction") input_column = st.sidebar.selectbox("Columns", st.session_state.data_columns) st.session_state['input_column'] = input_column st.sidebar.write('\n') st.sidebar.title("Severity Model") input_higher = st.sidebar.selectbox("Model", ["PathologyEmoryPubMedBERT"]) st.session_state['input_higher'] = input_higher if "prev_input_higher" not in st.session_state: st.session_state['prev_input_higher'] = st.session_state.input_higher st.session_state['input_higher_exist'] = check_if_exist(st.session_state.input_higher) st.session_state['load_new_higher_model'] = True elif st.session_state.prev_input_higher != st.session_state.input_higher: st.session_state['input_higher_exist'] = check_if_exist(st.session_state.input_higher) st.session_state['prev_input_higher'] = st.session_state.input_higher st.session_state['load_new_higher_model'] = True delete_var_session(keys=["data_df","input_column","user_input","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"]) st.sidebar.write('\n') st.sidebar.title("Diagnosis Model") input_all_labels = st.sidebar.selectbox("Model", ['single_vectorizer', 'branch_vectorizer']) st.session_state['input_all_labels'] = input_all_labels if "prev_input_all_labels" not in st.session_state: st.session_state['prev_input_all_labels'] = st.session_state.input_all_labels st.session_state['input_all_labels_exist'] = check_if_exist(st.session_state.input_all_labels) st.session_state['load_new_all_label_model'] = True elif st.session_state.prev_input_all_labels != st.session_state.input_all_labels: st.session_state['input_all_labels_exist'] = check_if_exist(st.session_state.input_all_labels) st.session_state['prev_input_all_labels'] = st.session_state.input_all_labels st.session_state['load_new_all_label_model'] = True delete_var_session(keys=["data_df","input_column","user_input","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"]) # For newline st.sidebar.write('\n') st.sidebar.title("Analysis Options") predictions, json_output, higher_order_pred,all_labels_pred,higher_order_prob,all_labels_prob = {},[],[],[],[],[] hg_df, all_l,highlight_samples, bert_lime_output, embeddings_all= [],[],[],[],[] if st.session_state['input_type'] == 'File': embeddings_plot = st.sidebar.radio('Display embeddings plot', ['2D', '3D', 'Dont Display'],index=1) st.session_state['embeddings_plot'] = embeddings_plot else: st.session_state['embeddings_plot'] = 'Dont Display' if st.session_state['input_type'] == 'File': embeddings_type = st.sidebar.radio('Dimensionality Reduction', ['PCA', 'TSNE','UMAP'],index=0) st.session_state['embeddings_type'] = embeddings_type if st.session_state.embeddings_type == "TSNE": perplexity = st.sidebar.slider("Perplexity", min_value=5, max_value=100, step=5, value=30) st.session_state['perplexity'] = perplexity learning_rate = st.sidebar.slider("Learning Rate", min_value=10, max_value=1000, step=10, value=100) st.session_state['learning_rate'] = learning_rate if st.session_state.embeddings_type == "UMAP": n_neighbors = st.sidebar.slider("Neighbors", min_value=2, max_value=100, step=1, value=2) st.session_state['n_neighbors'] = n_neighbors min_dist = st.sidebar.slider("Minimal Distance", min_value=0.1, max_value=0.99, step=0.05, value=0.1) st.session_state['min_dist'] = min_dist json_out = st.sidebar.checkbox('Display Json',value = True,key='check3') st.session_state['json_out'] = json_out if st.session_state['input_type'] == 'Text': bert_lime = st.sidebar.checkbox('Display BERT Interpretability',value = False,key='check3') st.session_state['bert_lime'] = bert_lime else: st.session_state['bert_lime'] = False # For newline st.sidebar.write('\n') st.sidebar.title("Prediction") if st.sidebar.button("Run Prediction"): if st.session_state.uploaded_file is None: st.sidebar.write("Please upload a your data") else: st.session_state['input_all_labels_exist'] = check_if_exist(st.session_state.input_all_labels) if not st.session_state.input_all_labels_exist: st.sidebar.write("Please Download Model: " + str(st.session_state.input_all_labels)) st.session_state['input_higher_exist'] = check_if_exist(st.session_state.input_higher) if not st.session_state.input_higher_exist: st.sidebar.write("Please Download Model: " + str(st.session_state.input_higher)) if st.session_state.input_all_labels_exist and st.session_state.input_higher_exist: if "predictor" not in st.session_state or st.session_state.load_new_higher_model or st.session_state.load_new_all_label_model: with st.spinner('Loading model...'): print("\n\tLoading Model") st.session_state["predictor"] = Pipeline(bert_option=str(st.session_state.input_higher), branch_option=str(st.session_state.input_all_labels)) st.session_state['load_new_higher_model'] = False st.session_state['load_new_all_label_model'] = False with st.spinner('Transforming Data...'): data = st.session_state.data_df[st.session_state.input_column].values with st.spinner('Analyzing...'): time.sleep(0.1) prog_bar = st.progress(0) logging.info("Running Predictions for data size of: " + str(len(data))) logging.info("\n\tRunning Predictions with: " + str(st.session_state.input_higher) + str(st.session_state.input_all_labels)) for index in tqdm(range(len(data))): d = data[index] time.sleep(0.1) prog_bar.progress(int( (100/len(data)) * (index+1) )) # refactor json preds,embeddings_output = st.session_state.predictor.run(d) embeddings = embeddings_output.tolist() embeddings_all.append(embeddings[0]) if st.session_state.bert_lime: logging.info("Running BERT LIME Interpretability Predictions") bert_lime_output.append(st.session_state.predictor.bert_interpretability(d)) predictions["sample_" + str(index)] = {} for ind,pred in enumerate(preds): predictions["sample_" + str(index)]["prediction_" + str(ind)] = pred prog_bar.progress(100) time.sleep(0.1) for key,sample in predictions.items(): higher,all_p, prob_higher, prob_all = [],[],[],[] for key,pred in sample.items(): for higher_order, sub_arr in pred.items(): higher.append(higher_order) prob_higher.append(round(sub_arr["probability"], 2)) for label,v in sub_arr['diagnose'].items(): all_p.append(label) prob_all.append(round(v["probability"], 2)) higher_order_pred.append(" | ".join(x for x in higher)) all_labels_pred.append(" | ".join(x for x in all_p)) higher_order_prob.append(" | ".join(str(x) for x in prob_higher)) all_labels_prob.append(" | ".join(str(x) for x in prob_all)) predictions_refact = copy.deepcopy(predictions) for index in tqdm(range(len(data))): highlights = "" key = "sample_" + str(index) for k,v in predictions[key].items(): for k_s, v_s in v.items(): predictions_refact["sample_" + str(index)]["data"] = v_s['data'] predictions_refact["sample_" + str(index)]["transformer_data"] = v_s['transformer_data'] predictions_refact["sample_" + str(index)]["discriminator_data"] = v_s['word_analysis']['discriminator_data'] highlight = v_s['word_analysis']['highlighted_html_text'] if len(highlights) >0: done = False merged = highlight while not done: done,merged = update_highlight(merged,highlights) highlights = merged else: highlights = highlight del predictions_refact[key][k][k_s]['data'] del predictions_refact[key][k][k_s]['transformer_data'] del predictions_refact[key][k][k_s]['word_analysis']['discriminator_data'] highlight_samples.append(highlights) json_output = predictions_refact hg_df = pd.DataFrame(list(zip(higher_order_pred, higher_order_prob)), columns =['Prediction', "Probability"]) all_l = pd.DataFrame(list(zip(all_labels_pred,all_labels_prob)), columns =['Prediction',"Probability"]) all_preds = pd.DataFrame(list(zip(higher_order_pred, all_labels_pred)), columns =['Severity Prediction',"Diagnose Prediction"]) st.session_state['hg_df'] = hg_df st.session_state['all_l'] = all_l st.session_state['all_preds'] = all_preds st.session_state['json_output'] = json_output st.session_state['highlight_samples'] = highlight_samples st.session_state['highlight_samples_df'] = pd.DataFrame(highlight_samples, columns =["HTML Word Importance"]) st.session_state['bert_lime_output'] = bert_lime_output st.session_state['embeddings_all'] = np.asarray(embeddings_all) if 'data_df' in st.session_state and 'json_output' in st.session_state: st.markdown("

Model Analysis

", unsafe_allow_html=True) selected_indices = st.multiselect('Select Rows to Display Word Importance, Embeddings Visualization, and Json Analysis:', [x for x in range(len(st.session_state.data_df))]) st.session_state['selected_indices'] = selected_indices add_content(cols) if 'json_output' in st.session_state: st.sidebar.write('\n') st.sidebar.title("Save Results") st.sidebar.write('\n') st.sidebar.download_button( label="Download Output Json", data=str(st.session_state.json_output), file_name="output.json", ) st.sidebar.download_button( label="Download Predictions", data=st.session_state.all_preds.to_csv(), file_name="predictions.csv", ) st.sidebar.download_button( label="Download Data + Predictions", data = pd.concat([st.session_state.data_df, st.session_state.all_preds,st.session_state.highlight_samples_df], axis=1, join='inner').to_csv(), file_name="data_predictions.csv", ) st.sidebar.write('\n') st.sidebar.title("Contact Me") sub_colms = st.sidebar.columns([1, 1, 1]) sub_colms[0].markdown(''' ''',unsafe_allow_html=True) sub_colms[1].markdown(''' ''',unsafe_allow_html=True) sub_colms[2].markdown(''' ''',unsafe_allow_html=True) hidde_menu() if __name__ == '__main__': myargs = [ "Made in ", image('https://avatars3.githubusercontent.com/u/45109972?s=400&v=4', width=px(25), height=px(25)), " with ❤️ by ", link("https://www.linkedin.com/in/thiagosantos-cs/", "@thiagosantos-cs"), br(), link("https://www.linkedin.com/in/thiagosantos-cs/", image('https://img.icons8.com/color/48/000000/twitter--v1.png')), link("https://github.com/thiagosantos1/BreastPathologyClassificationSystem", image('https://img.icons8.com/fluency/48/000000/github.png')), ] logging.basicConfig( format="%(asctime)s - %(levelname)s - %(filename)s - %(message)s", datefmt="%d/%m/%Y %H:%M:%S", level=logging.INFO) main(myargs)