File size: 9,029 Bytes
05b0e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from gensim.parsing import preprocessing
from gensim.parsing.preprocessing import strip_tags, strip_punctuation,strip_numeric,remove_stopwords
import re 
from nltk.stem import PorterStemmer
import nltk
from nltk.corpus import stopwords
import pandas as pd 

def remove_noise_text(txt):

  txt = txt.lower()
  txt = re.sub('right|left', '', txt) # remove right/left spaces
  txt = re.sub("primary site:", '', txt)

  #txt = re.sub('post-surgical changes', ' ', txt.lower()) 

  # Remove any mentions to " Findings were discussed with...."
  txt = txt.split("findings were discussed with")[0] 

  # Remove any other occurance of PI's Information
  txt = txt.split("this study has been reviewed and interpreted")[0] 
  txt = txt.split("this finding was communicated to")[0] 
  txt = txt.split("important findings were identified")[0] 
  txt = txt.split("these findings")[0] 
  txt = txt.split("findings above were")[0] 
  txt = txt.split("findings regarding")[0] 
  txt = txt.split("were discussed")[0] 
  txt = txt.split("these images were")[0] 
  txt = txt.split("important finding")[0] 

  # remove any section headers
  txt = re.sub("post-surgical changes:", '', txt)
  txt = re.sub("post surgical changes:", '', txt)
  txt = re.sub("primary site:", '', txt)
  txt = re.sub("primary site", '', txt)
  txt = re.sub("neck:", '', txt)
  txt = re.sub("post-treatment changes:", '', txt)
  txt = re.sub("post treatment changes:", '', txt)
  txt = re.sub("brain, orbits, spine and lungs:", '', txt)
  txt = re.sub("primary :", '', txt)
  txt = re.sub("neck:", '', txt)
  txt = re.sub("aerodigestive tract:", '', txt)
  txt = re.sub("calvarium, skull base, and spine:", '', txt)
  txt = re.sub("other:", '', txt)
  txt = re.sub("upper neck:", '', txt)
  txt = re.sub("perineural disease:", '', txt)
  txt = re.sub("technique:", '', txt)
  txt = re.sub("comparison:", '', txt)
  txt = re.sub("paranasal sinuses:", '', txt)
  txt = re.sub("included orbits:", '', txt)
  txt = re.sub("nasopharynx:", '', txt)
  txt = re.sub("tympanomastoid cavities:", '', txt)
  txt = re.sub("skull base and calvarium:", '', txt)
  txt = re.sub("included intracranial structures:", '', txt)
  txt = re.sub("abnormal enhancement:", '', txt)
  txt = re.sub("lymph nodes:", '', txt)
  txt = re.sub("impression:", '', txt)
  txt = re.sub("nodes:", '', txt)
  txt = re.sub("mri orbits:", '', txt)
  txt = re.sub("mri brain:", '', txt)
  txt = re.sub("brain:", '', txt)
  txt = re.sub("ct face w/:", '', txt)
  txt = re.sub("transspatial extension:", '', txt)
  txt = re.sub("thyroid bed:", '', txt)
  txt = re.sub("additional findings:", '', txt)
  txt = re.sub("series_image", '', txt) 
  txt = re.sub("series image", '', txt)
  txt = re.sub("image series", '', txt)
  txt = re.sub("series", '', txt)

  txt = re.sub(" mm | mm|mm ", " ", txt)
  txt = re.sub(" series | series|series ", "", txt)
  txt = re.sub(" cm | cm|cm ", " ", txt)
  txt = re.sub(" cc | cc|cc ", " ", txt)
  txt = re.sub(" ct | ct|ct ", " ", txt)
  txt = re.sub(" mri | mri|mri ", " ", txt)
  txt = re.sub(" see | see|see ", " ", txt)
  txt = re.sub(" iia | iia|iia ", " ", txt)
  txt = re.sub("comment", "", txt)


  txt = re.sub("post treatment", '', txt)
  txt = re.sub("post_treatment", '', txt)
  txt = re.sub("post-treatment", '', txt)
  txt = re.sub("findings suggest", '', txt)
  txt = re.sub("findings", '', txt)
  txt = re.sub("suggest", '', txt)
  txt = re.sub("study reviewed", '', txt)
  txt = re.sub("study", '', txt)
  txt = re.sub("reviewed", '', txt)
  txt = re.sub("please see", '', txt)
  txt = re.sub("please", '', txt)
  
  txt = re.sub("skull base", '', txt)
  txt = re.sub("fdg avid", '', txt)
  txt = re.sub("fdg aivity", '', txt)
  txt = re.sub("please see chest ct for further evaluation of known lung mass", '', txt)
  
  txt = re.sub("status_post", '', txt)
  txt = re.sub("status post|clock|/|'/'", '', txt)
  txt = re.sub("statuspost|:", '', txt)
  txt = re.sub(" cm | cm|cm ", " centimeters ", txt)
  txt = re.sub(" cc | cc|cc ", " cubic centimeters ", txt)
  txt = re.sub(" ct | ct|ct ", " carat metric ", txt)
  txt = re.sub(" mm | mm|mm ", " millimeters ", txt)
  #txt = re.sub("(\\d*\\.\\d+)|(\\d+\\.[0-9 ]+)","",txt)

  # in the worst case, just replace the name from PI to empty string
  txt = re.sub("dr\\.\\s[^\\s]+", '', txt)

  
  txt = re.sub('\\;', ' .', txt)  
  txt = re.sub('\\.', ' .', txt)  

  # Removing multiple spaces
  txt = re.sub(r'\s+', ' ', txt)


  return txt

def add_bigrams(txt, fixed_bigrams):

  for b in fixed_bigrams:
    sub = ""
    not_first = False
    for x in b[1:]:
      if not_first:
        sub += "|"
        not_first = True

      sub += str(x) + "|" + str(x) + " " + "|" +  " " + str(x) + "|" + " " + str(x)   
    txt = re.sub(sub, b[0], txt)

  return txt


def clean_text(txt_orig,filters,stop_words,non_stop_words,freq_words,fixed_bigrams,steam, lemma , clean, min_lenght, eightify=False):
  txt = remove_noise_text(txt_orig)

  #print("\n\t\tOriginal\n", txt)
  txt = add_bigrams(txt, fixed_bigrams)
  #print("\n\t\tCleaned\n", txt)
  words = preprocessing.preprocess_string(txt, filters)
  words = add_bigrams(" ".join(w for w in words), fixed_bigrams).split()

  txt = " ".join(w for w in words)
  
  # eightify 
  # 
  if eightify:
    replaces = [ ["her2|her 2|her two", " hertwo "], ["0", "8"], ["1", "8"], ["2", "8"], ["3", "8"],["4", "8"],
                ["5", "8"],["6", "8"] ,["7", "8"] ,["8", "8"] ,["9", "8"] ,
                ["\\>", " greather "], ["\\<", " less "]]

  else:
    replaces = [ ["her2|her 2|her two", " hertwo "], ["0", "zero "], ["1", "one "], ["2", "two "], ["3", "three "],["4", "four "],
                ["5", "five "],["6", "six "] ,["7", "seven "] ,["8", "eight "] ,["9", "nine " ] ,
                ["\\>", " greather "], ["\\<", " less "]]


  for sub in replaces:
    txt = re.sub(sub[0], sub[1], txt)

  # Removing multiple spaces
  txt = re.sub(r'\s+', ' ', txt)

  words = txt.split()

  if clean:
    words = [w for w in words if (not w in stop_words and re.search("[a-z-A-Z]+\\w+",w) != None and (len(w) >min_lenght or w in non_stop_words) or w=='.') ] 
  else:
    words = [w for w in words if (re.search("[a-z-A-Z]+\\w+",w) != None and (len(w) >min_lenght or w in non_stop_words) or w=='.')] 

  c_words = words.copy()

  if steam:
    porter = PorterStemmer()
    c_words = [porter.stem(word) for word in c_words if not porter.stem(word) in freq_words and (len(porter.stem(word)) >min_lenght or word in non_stop_words or word=='.')]

  if lemma:
    lem = nltk.stem.wordnet.WordNetLemmatizer()
    c_words = [lem.lemmatize(word) for word in c_words if not lem.lemmatize(word) in freq_words and (len(lem.lemmatize(word)) >min_lenght or word in non_stop_words or word=='.')]

  return c_words
  

def text_cleaning(data, steam=False, lemma = True, clean=True, min_lenght=2, remove_punctuation=True,
                  freq_words_analysis=False, single_input=False,eightify=True):

  clean_txt = []


  freq_words = ["breast","biopsy","margin","dual","tissue","excision","change","core","identified",
                "mastectomy","site","report","lesion","superior","anterior","inferior","medial",
                "lateral","synoptic","evidence","slide", "brbx"]

                    # position 0 means the bigram output - 1:end means how they may come on text
  fixed_bigrams = [ [' grade_one ', 'grade 1', 'grade i', 'grade I', 'grade one',],
                    [' grade_two ', 'grade 2', 'grade ii', 'grade II', 'grade two', ],
                    [' grade_three ', 'grade 3' , 'grade iii', 'grade III', 'grade three']]


  if remove_punctuation:
    filters = [lambda x: x.lower(), strip_tags, strip_punctuation]
  else:
    filters = [lambda x: x.lower(), strip_tags]
    
  stop_words = set(stopwords.words('english'))
  non_stop_words = ['no', 'than', 'not']
  for x in non_stop_words:
    stop_words.remove(x)

  if single_input:
    c_words = clean_text(data,filters,stop_words,non_stop_words,freq_words,fixed_bigrams,steam, lemma, clean, min_lenght,eightify=eightify)
    if len(c_words)>0:
      if c_words[0] =='.':
        c_words = c_words[1:]
    clean_txt.append(c_words)

  else:
    for i in range(data.shape[0]):
      txt_orig = data.iloc[i].lower()
      c_words = clean_text(txt_orig,filters,stop_words,non_stop_words,freq_words,fixed_bigrams,steam, lemma, clean, min_lenght,eightify=eightify)
      if len(c_words)>0:
        if c_words[0] =='.':
          c_words = c_words[1:]
      clean_txt.append(c_words)


  if freq_words_analysis:
    flatten_corpus = [j for sub in clean_txt for j in sub] 
    clean_txt = []
    unique = list(set(flatten_corpus))
    wordfreq = [flatten_corpus.count(p) for p in unique]
    wordfreq =  dict(list(zip(unique,wordfreq)))

    freqdict = [(wordfreq[key], key) for key in wordfreq]
    freqdict.sort()
    freqdict.reverse()

    df = pd.DataFrame(freqdict,columns = ['Frequency','Word']) 


    df.to_excel('../mammo_word_count.xls')
    
  return clean_txt

if __name__ == '__main__':
  exit()